a2c-AntBulletEnv-v0 / config.json
Arindam1975's picture
Final commit
71cc6d7
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dc28ec430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dc28ec4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dc28ec550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dc28ec5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6dc28ec670>", "forward": "<function ActorCriticPolicy.forward at 0x7f6dc28ec700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6dc28ec790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dc28ec820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6dc28ec8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dc28ec940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dc28ec9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dc28eca60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6dc28e30c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688964817017451309, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFTSST8uUJa/GU2tPBwhND9b9dm+rPO3vw1DHb5BMYG/GzkaP+s5m71ethA/+lffv1Ff574Fp14/g0vlvT7v0D5mNF09wfKePzv6iD6D0WE+K76Gvh/2377LB/w+KzHTP4m3g79TvAI/ohLqvwSIhr8JTRQ/6xOfvsPGBD/Gtis/Z4o/v2TExb5tFoC/98MNPovDGD/3gwm9IFJSvoSY/r4E15w8SvebPy6nXD0z8JE/AUUeP1z/EkAe06q/haXOvxVkE79mPKc9LPWkPx69Ej+Jt4O/U7wCP6IS6r9QknM/AOkAP0yBir/la909wqG5Pnn3lb83CGi+TWptPuJf6b4bJRg/pNWXvN88fT8Lixe/Y1Kvvjv4I7/9Zba+izGNv9o2277cNSq/Not/PkauI7688RO/OpkoPmGSFz9TNK0/osZ4P6ik+r+a/Qs/BIiGv7Mofj+WtIG/v9YqPh3dpT/2Ugm/3TiTPlPyKb9ho9S+wVIcv8RKWUAGAJE/nC+IPrd5Jb8WDkk/yvi3vldL07qzoLm+1GtFPXjeb79WZq0/rIKTvomkuD7Kco0+lpYqPqLGeD9TvAI/mv0LPwSIhr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC1aH61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuOTovQAAAAAa996/AAAAABJxmb0AAAAAvzfwPwAAAAANrKW9AAAAAONa3j8AAAAAWZ2XOwAAAAAWH+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAecRXtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHRCAj4AAAAAeC/8vwAAAACmiIW8AAAAAH1l9T8AAAAAWfyWPQAAAAC1EOY/AAAAAOtHnz0AAAAAySLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMlnvzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBuxm09AAAAAO029r8AAAAANdIIPgAAAAApYfM/AAAAAMvSiDwAAAAAdnTkPwAAAAA0GqY9AAAAAODH6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADRZCG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAIqKovQAAAAB/1QDAAAAAANZeijwAAAAA1U/1PwAAAACGSPi8AAAAANWA7j8AAAAA4eHFPQAAAABZgOW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuBbIq9XcSMAWyUTegDjAF0lEdArQaYNTcZcnV9lChoBkdAj/t3sw+MZWgHTegDaAhHQK0KIV3Ux211fZQoaAZHQJtXHcqOLixoB03oA2gIR0CtC3/RmbsodX2UKGgGR0CXCfjfNzKcaAdN6ANoCEdArQzVdzGPxXV9lChoBkdAnAlCA6Mir2gHTegDaAhHQK0US/Zdv891fZQoaAZHQJjZUIZ62ORoB03oA2gIR0CtGhFByCFsdX2UKGgGR0CTHmufVZs9aAdN6ANoCEdArRvXIlt0m3V9lChoBkdAkn9Q88s+V2gHTegDaAhHQK0dMGM4tHx1fZQoaAZHQJ2weoVEd/9oB03oA2gIR0CtIy23azu4dX2UKGgGR0CbLLvWH1vmaAdN6ANoCEdArSbMfHPu5XV9lChoBkdAmGIvt2LYPGgHTegDaAhHQK0oMJ1JUYN1fZQoaAZHQJ4P4Zm7J4loB03oA2gIR0CtKX71h9b5dX2UKGgGR0CadNiwSrYHaAdN6ANoCEdArTAPt2LYPHV9lChoBkdAmbU6FuejEmgHTegDaAhHQK01UUaAFxJ1fZQoaAZHQJZJeqWC2+hoB03oA2gIR0CtN1i/fwZwdX2UKGgGR0CbxcR4hUzbaAdN6ANoCEdArTlybQTmGXV9lChoBkdAn0Ae2/i5u2gHTegDaAhHQK0/dYRNATt1fZQoaAZHQJ3JMtBfKIVoB03oA2gIR0CtQv1EmY0EdX2UKGgGR0Ce8I/W1+iKaAdN6ANoCEdArURM1n/T9nV9lChoBkdAn62IFV1fV2gHTegDaAhHQK1Fn3ljmS11fZQoaAZHQKDHOrS3LFJoB03oA2gIR0CtS3a/h2nsdX2UKGgGR0Cez11dPci4aAdN6ANoCEdArU9L7di2D3V9lChoBkdAm+WOQdS2pmgHTegDaAhHQK1RVgtOEdx1fZQoaAZHQJyHvr3TNMZoB03oA2gIR0CtU1iEg4ffdX2UKGgGR0Cf5KKjBVMmaAdN6ANoCEdArVtiQgcLjXV9lChoBkdAnnqfbfxc3WgHTegDaAhHQK1ezxtHhCN1fZQoaAZHQJxDufGuLaVoB03oA2gIR0CtYB/D1oQGdX2UKGgGR0CdbmXXRPXTaAdN6ANoCEdArWF0zqKP4nV9lChoBkdAkZVn/T9bYGgHTegDaAhHQK1nPze40/J1fZQoaAZHQJRj0D9wWFhoB03oA2gIR0CtarLtNSIhdX2UKGgGR0CU48WTHKfWaAdN6ANoCEdArWwMeIVM23V9lChoBkdAlzX8kD6nBWgHTegDaAhHQK1tuBS1map1fZQoaAZHQIOi9ndweeZoB03oA2gIR0CtdqAvL5h0dX2UKGgGR0CSXyTzND+jaAdN6ANoCEdArXrNGsmv4nV9lChoBkdAnKKPKlpGnWgHTegDaAhHQK18KZrHlwN1fZQoaAZHQJeO7Q+lj3FoB03oA2gIR0CtfYMUqQRxdX2UKGgGR0CXTW2cawUyaAdN6ANoCEdArYNG7YkE93V9lChoBkdAnKHadQO4G2gHTegDaAhHQK2GxuyeI2x1fZQoaAZHQJyjMgq3EydoB03oA2gIR0CtiBZ/CqIadX2UKGgGR0CY8kcZLqUvaAdN6ANoCEdArYltc+qzaHV9lChoBkdAnUwiL61stWgHTegDaAhHQK2Qek2xY7t1fZQoaAZHQJxecABDG99oB03oA2gIR0CtlgPBJqZddX2UKGgGR0CdBqZdv864aAdN6ANoCEdArZfmjCYTkHV9lChoBkdAnaIf8Q7LdWgHTegDaAhHQK2ZOPHT7VJ1fZQoaAZHQJ3pYAEMb3poB03oA2gIR0CtnxJY1YQrdX2UKGgGR0CeznPKMefaaAdN6ANoCEdAraKag2606nV9lChoBkdAnA9clolD4WgHTegDaAhHQK2j9KnvUjN1fZQoaAZHQJvrQGHHmzVoB03oA2gIR0CtpUrpiZv2dX2UKGgGR0Cdc5dVvMr3aAdN6ANoCEdAratyx7iQ1nV9lChoBkdAj9ryD7Ikq2gHTegDaAhHQK2wwbWmP5p1fZQoaAZHQJwKOad+XqtoB03oA2gIR0Ctstmr0aqCdX2UKGgGR0Cf6Cu5SWJKaAdN6ANoCEdArbTsTBZZCHV9lChoBkdAmoEyWAwwkGgHTegDaAhHQK27ePbwjMV1fZQoaAZHQJvYTBoEjgRoB03oA2gIR0Ctvy7h3qzJdX2UKGgGR0Ce4TqR2bG4aAdN6ANoCEdArcCViF0xM3V9lChoBkdAnjhGHgxagWgHTegDaAhHQK3B+4Ia99N1fZQoaAZHQJ4iom+j/MpoB03oA2gIR0Ctx/tnf2sadX2UKGgGR0CYyWPepGWlaAdN6ANoCEdArcv9i4J/onV9lChoBkdAmwVWVqveQGgHTegDaAhHQK3N+od+5OJ1fZQoaAZHQJi+Bun/DLtoB03oA2gIR0Ct0AK94/u9dX2UKGgGR0CUVISSNfgKaAdN6ANoCEdArdgPcBU70XV9lChoBkdAmURlEJBw/GgHTegDaAhHQK3bj+PRzBB1fZQoaAZHQJtruuvECNloB03oA2gIR0Ct3OpE6T4ddX2UKGgGR0CabcURWcSXaAdN6ANoCEdArd49pVS4v3V9lChoBkdAmUCd38n/k2gHTegDaAhHQK3kIVJL/S91fZQoaAZHQJ9aTKnvUjNoB03oA2gIR0Ct58C+L3sYdX2UKGgGR0CcYwStNi6QaAdN6ANoCEdAreksQmNR33V9lChoBkdAlPYzCDVYp2gHTegDaAhHQK3q5gE2YOV1fZQoaAZHQJdFd+rlvIhoB03oA2gIR0Ct9Bpx3mmtdX2UKGgGR0Cab1h4MWoFaAdN6ANoCEdArff52ECeVnV9lChoBkdAlhhzFId2gWgHTegDaAhHQK35TEH+qBF1fZQoaAZHQJTP3kn1FphoB03oA2gIR0Ct+qotL+PzdX2UKGgGR0CbN8Hn2ZiNaAdN6ANoCEdArgC0jHGS6nV9lChoBkdAmgcV4s3AEmgHTegDaAhHQK4EQA+6iCd1fZQoaAZHQJ5UP8Nx2jhoB03oA2gIR0CuBae9SMtLdX2UKGgGR0CYuF/ZuhsZaAdN6ANoCEdArgb3nbItDnV9lChoBkdAmx82SQo1DWgHTegDaAhHQK4OunGbTc91fZQoaAZHQJxzXzUZvUBoB03oA2gIR0CuFC0N8VpLdX2UKGgGR0CfPJmA9V3maAdN6ANoCEdArhWAh8pkPXV9lChoBkdAm4Se1F6RhmgHTegDaAhHQK4W2d92HL11fZQoaAZHQJANNiF0xM5oB03oA2gIR0CuHLzeXRgJdX2UKGgGR0CR3NwjMV1waAdN6ANoCEdAriA/CMxXXHV9lChoBkdAk4kDABT4tmgHTegDaAhHQK4hm9AX2uh1fZQoaAZHQJsNt8uzyBloB03oA2gIR0CuIvKyOaOQdX2UKGgGR0CXQI5eqrBCaAdN6ANoCEdArilwcaOxS3V9lChoBkdAm3JysfaHsWgHTegDaAhHQK4uyf8uSOl1fZQoaAZHQJcyMLORkmRoB03oA2gIR0CuMPWBJ7LMdX2UKGgGR0Cclc/kNnXeaAdN6ANoCEdArjMW6qbSZ3V9lChoBkdAlQYslHBk7WgHTegDaAhHQK45H9KmKqJ1fZQoaAZHQI2hdI9TxXpoB03oA2gIR0CuPK8rRSgodX2UKGgGR0CTCPKYRdyDaAdN6ANoCEdArj4gVbiZOXV9lChoBkdAmXRty925hGgHTegDaAhHQK4/igRK6Fx1fZQoaAZHQIh88Ttb9qFoB03oA2gIR0CuRaGDlHSXdX2UKGgGR0CZV0MYMvytaAdN6ANoCEdArkonUMG5c3V9lChoBkdAnAuQeV9nb2gHTegDaAhHQK5MN8fms/91fZQoaAZHQJRVesV+I/JoB03oA2gIR0CuTl2QfZEldX2UKGgGR0CbMh2Xsw+MaAdN6ANoCEdArlXpesxO+XV9lChoBkdAnDKYduHerWgHTegDaAhHQK5ZiXUH6dl1fZQoaAZHQJwuIcvM8oxoB03oA2gIR0CuWuA6+36RdX2UKGgGR0CZ+P8Md92HaAdN6ANoCEdArlxAjY7JXHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}