Update README.md
Browse files
README.md
CHANGED
@@ -30,12 +30,8 @@ It achieves the following results on the evaluation set:
|
|
30 |
## Model description
|
31 |
|
32 |
Model takes text as input and outputs an predictions for one of the 6 emotions.
|
33 |
-
|
34 |
-
|
35 |
-
2: "love",
|
36 |
-
3: "anger",
|
37 |
-
4: "fear",
|
38 |
-
5: "surprise"}
|
39 |
|
40 |
## Intended uses & limitations
|
41 |
|
@@ -45,8 +41,16 @@ Use to identify an emotion of a user from above mentioned emotions.
|
|
45 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
46 |
|
47 |
tokenizer = AutoTokenizer.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion")
|
|
|
48 |
model = AutoModelForSequenceClassification.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion", from_tf = True)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
## Training and evaluation data
|
51 |
|
52 |
Training data size = 16000, validation data = 2000, and test data = 2000
|
|
|
30 |
## Model description
|
31 |
|
32 |
Model takes text as input and outputs an predictions for one of the 6 emotions.
|
33 |
+
|
34 |
+
[0:'anger', 1: 'fear', 2: 'joy', 3: 'love', 4: 'sadness', 5: 'surprise']
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Intended uses & limitations
|
37 |
|
|
|
41 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
42 |
|
43 |
tokenizer = AutoTokenizer.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion")
|
44 |
+
|
45 |
model = AutoModelForSequenceClassification.from_pretrained("Arjun4707/Distilbert-base-uncased_dair-ai_emotion", from_tf = True)
|
46 |
|
47 |
+
example = "I am feeling low"
|
48 |
+
|
49 |
+
inputs = tokenizer(example, padding = True, return_tensors = 'pt')
|
50 |
+
|
51 |
+
output_logits = model(inputs)['logits']
|
52 |
+
|
53 |
+
|
54 |
## Training and evaluation data
|
55 |
|
56 |
Training data size = 16000, validation data = 2000, and test data = 2000
|