Upload model
Browse files- config.json +37 -0
- configuration_gpt2_mq.py +201 -0
- modeling_gpt2_mq.py +346 -0
- pytorch_model.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Instruction10K512/checkpoint-18000",
|
| 3 |
+
"activation_function": "gelu_fast",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"GPT2LMHeadCustomModel"
|
| 6 |
+
],
|
| 7 |
+
"attention_head_type": "multiquery",
|
| 8 |
+
"attn_pdrop": 0.1,
|
| 9 |
+
"auto_map": {
|
| 10 |
+
"AutoConfig": "configuration_gpt2_mq.GPT2CustomConfig",
|
| 11 |
+
"AutoModelForCausalLM": "modeling_gpt2_mq.GPT2LMHeadCustomModel"
|
| 12 |
+
},
|
| 13 |
+
"bos_token_id": 50256,
|
| 14 |
+
"embd_pdrop": 0.1,
|
| 15 |
+
"eos_token_id": 50256,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"layer_norm_epsilon": 1e-05,
|
| 18 |
+
"model_type": "gpt2",
|
| 19 |
+
"n_embd": 2048,
|
| 20 |
+
"n_head": 16,
|
| 21 |
+
"n_inner": 8192,
|
| 22 |
+
"n_layer": 24,
|
| 23 |
+
"n_positions": 2048,
|
| 24 |
+
"reorder_and_upcast_attn": false,
|
| 25 |
+
"resid_pdrop": 0.1,
|
| 26 |
+
"scale_attn_by_inverse_layer_idx": false,
|
| 27 |
+
"scale_attn_weights": true,
|
| 28 |
+
"summary_activation": null,
|
| 29 |
+
"summary_first_dropout": 0.1,
|
| 30 |
+
"summary_proj_to_labels": true,
|
| 31 |
+
"summary_type": "cls_index",
|
| 32 |
+
"summary_use_proj": true,
|
| 33 |
+
"torch_dtype": "float32",
|
| 34 |
+
"transformers_version": "4.26.0.dev0",
|
| 35 |
+
"use_cache": true,
|
| 36 |
+
"vocab_size": 49280
|
| 37 |
+
}
|
configuration_gpt2_mq.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2018 The OpenAI Team Authors and Hugging Face Inc. team.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" Custom GPT-2 configuration"""
|
| 17 |
+
from collections import OrderedDict
|
| 18 |
+
from typing import Any, List, Mapping, Optional
|
| 19 |
+
from enum import Enum
|
| 20 |
+
|
| 21 |
+
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
|
| 22 |
+
|
| 23 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 24 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
| 25 |
+
from transformers.utils import logging
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
logger = logging.get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 31 |
+
"gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
|
| 32 |
+
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
|
| 33 |
+
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
|
| 34 |
+
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
|
| 35 |
+
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
MULTI_HEAD = "multihead"
|
| 39 |
+
MULTI_QUERY = "multiquery"
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class GPT2CustomConfig(PretrainedConfig):
|
| 43 |
+
"""
|
| 44 |
+
This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
|
| 45 |
+
instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
|
| 46 |
+
configuration with the defaults will yield a similar configuration to that of the GPT-2
|
| 47 |
+
[gpt2](https://huggingface.co/gpt2) architecture.
|
| 48 |
+
|
| 49 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 50 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
| 55 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
| 56 |
+
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
|
| 57 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
| 58 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 59 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 60 |
+
n_embd (`int`, *optional*, defaults to 768):
|
| 61 |
+
Dimensionality of the embeddings and hidden states.
|
| 62 |
+
n_layer (`int`, *optional*, defaults to 12):
|
| 63 |
+
Number of hidden layers in the Transformer encoder.
|
| 64 |
+
n_head (`int`, *optional*, defaults to 12):
|
| 65 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 66 |
+
n_inner (`int`, *optional*, defaults to None):
|
| 67 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
| 68 |
+
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
| 69 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
| 70 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
| 71 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 72 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
| 73 |
+
The dropout ratio for the embeddings.
|
| 74 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
| 75 |
+
The dropout ratio for the attention.
|
| 76 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
| 77 |
+
The epsilon to use in the layer normalization layers.
|
| 78 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 79 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 80 |
+
summary_type (`string`, *optional*, defaults to `"cls_index"`):
|
| 81 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
| 82 |
+
[`TFGPT2DoubleHeadsModel`].
|
| 83 |
+
|
| 84 |
+
Has to be one of the following options:
|
| 85 |
+
|
| 86 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
| 87 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
| 88 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
| 89 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
| 90 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
| 91 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
| 92 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
| 93 |
+
[`TFGPT2DoubleHeadsModel`].
|
| 94 |
+
|
| 95 |
+
Whether or not to add a projection after the vector extraction.
|
| 96 |
+
summary_activation (`str`, *optional*):
|
| 97 |
+
Argument used when doing sequence summary. Used in for the multiple choice head in
|
| 98 |
+
[`GPT2DoubleHeadsModel`].
|
| 99 |
+
|
| 100 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
| 101 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
| 102 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
| 103 |
+
[`TFGPT2DoubleHeadsModel`].
|
| 104 |
+
|
| 105 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
| 106 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
| 107 |
+
Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
|
| 108 |
+
[`TFGPT2DoubleHeadsModel`].
|
| 109 |
+
|
| 110 |
+
The dropout ratio to be used after the projection and activation.
|
| 111 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
| 112 |
+
Scale attention weights by dividing by sqrt(head_dim)..
|
| 113 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 114 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
| 115 |
+
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
|
| 116 |
+
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
|
| 117 |
+
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
|
| 118 |
+
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
|
| 119 |
+
dot-product/softmax to float() when training with mixed precision.
|
| 120 |
+
|
| 121 |
+
Example:
|
| 122 |
+
|
| 123 |
+
```python
|
| 124 |
+
>>> from transformers import GPT2Config, GPT2Model
|
| 125 |
+
|
| 126 |
+
>>> # Initializing a GPT2 configuration
|
| 127 |
+
>>> configuration = GPT2Config()
|
| 128 |
+
|
| 129 |
+
>>> # Initializing a model (with random weights) from the configuration
|
| 130 |
+
>>> model = GPT2Model(configuration)
|
| 131 |
+
|
| 132 |
+
>>> # Accessing the model configuration
|
| 133 |
+
>>> configuration = model.config
|
| 134 |
+
```"""
|
| 135 |
+
|
| 136 |
+
model_type = "gpt2"
|
| 137 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 138 |
+
attribute_map = {
|
| 139 |
+
"hidden_size": "n_embd",
|
| 140 |
+
"max_position_embeddings": "n_positions",
|
| 141 |
+
"num_attention_heads": "n_head",
|
| 142 |
+
"num_hidden_layers": "n_layer",
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
vocab_size=50257,
|
| 148 |
+
n_positions=1024,
|
| 149 |
+
n_embd=768,
|
| 150 |
+
n_layer=12,
|
| 151 |
+
n_head=12,
|
| 152 |
+
n_inner=None,
|
| 153 |
+
activation_function="gelu_new",
|
| 154 |
+
resid_pdrop=0.1,
|
| 155 |
+
embd_pdrop=0.1,
|
| 156 |
+
attn_pdrop=0.1,
|
| 157 |
+
layer_norm_epsilon=1e-5,
|
| 158 |
+
initializer_range=0.02,
|
| 159 |
+
summary_type="cls_index",
|
| 160 |
+
summary_use_proj=True,
|
| 161 |
+
summary_activation=None,
|
| 162 |
+
summary_proj_to_labels=True,
|
| 163 |
+
summary_first_dropout=0.1,
|
| 164 |
+
scale_attn_weights=True,
|
| 165 |
+
use_cache=True,
|
| 166 |
+
bos_token_id=50256,
|
| 167 |
+
eos_token_id=50256,
|
| 168 |
+
scale_attn_by_inverse_layer_idx=False,
|
| 169 |
+
reorder_and_upcast_attn=False,
|
| 170 |
+
attention_head_type=MULTI_HEAD,
|
| 171 |
+
**kwargs,
|
| 172 |
+
):
|
| 173 |
+
self.vocab_size = vocab_size
|
| 174 |
+
self.n_positions = n_positions
|
| 175 |
+
self.n_embd = n_embd
|
| 176 |
+
self.n_layer = n_layer
|
| 177 |
+
self.n_head = n_head
|
| 178 |
+
self.n_inner = n_inner
|
| 179 |
+
self.activation_function = activation_function
|
| 180 |
+
self.resid_pdrop = resid_pdrop
|
| 181 |
+
self.embd_pdrop = embd_pdrop
|
| 182 |
+
self.attn_pdrop = attn_pdrop
|
| 183 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 184 |
+
self.initializer_range = initializer_range
|
| 185 |
+
self.summary_type = summary_type
|
| 186 |
+
self.summary_use_proj = summary_use_proj
|
| 187 |
+
self.summary_activation = summary_activation
|
| 188 |
+
self.summary_first_dropout = summary_first_dropout
|
| 189 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
| 190 |
+
self.scale_attn_weights = scale_attn_weights
|
| 191 |
+
self.use_cache = use_cache
|
| 192 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
| 193 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
| 194 |
+
self.attention_head_type = attention_head_type
|
| 195 |
+
# assert attention_head_type in [AttentionType.MULTI_HEAD, AttentionType.MULTI_QUERY]
|
| 196 |
+
assert attention_head_type in [MULTI_HEAD, MULTI_QUERY]
|
| 197 |
+
|
| 198 |
+
self.bos_token_id = bos_token_id
|
| 199 |
+
self.eos_token_id = eos_token_id
|
| 200 |
+
|
| 201 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
modeling_gpt2_mq.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch OpenAI GPT-2 model modified with MultiQuery attention"""
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.cuda.amp import autocast
|
| 13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 14 |
+
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.modeling_outputs import (
|
| 17 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 18 |
+
CausalLMOutputWithCrossAttentions,
|
| 19 |
+
SequenceClassifierOutputWithPast,
|
| 20 |
+
TokenClassifierOutput,
|
| 21 |
+
)
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
| 23 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
| 24 |
+
|
| 25 |
+
from transformers.utils import (
|
| 26 |
+
ModelOutput,
|
| 27 |
+
add_code_sample_docstrings,
|
| 28 |
+
add_start_docstrings,
|
| 29 |
+
add_start_docstrings_to_model_forward,
|
| 30 |
+
logging,
|
| 31 |
+
replace_return_docstrings,
|
| 32 |
+
)
|
| 33 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 34 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2Block, GPT2PreTrainedModel, GPT2LMHeadModel
|
| 35 |
+
from .configuration_gpt2_mq import GPT2CustomConfig, MULTI_QUERY, MULTI_HEAD
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class GPT2MQAttention(nn.Module):
|
| 40 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
| 41 |
+
super().__init__()
|
| 42 |
+
assert config.attention_head_type == MULTI_QUERY
|
| 43 |
+
|
| 44 |
+
max_positions = config.max_position_embeddings
|
| 45 |
+
self.register_buffer(
|
| 46 |
+
"bias",
|
| 47 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
| 48 |
+
1, 1, max_positions, max_positions
|
| 49 |
+
),
|
| 50 |
+
)
|
| 51 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
| 52 |
+
|
| 53 |
+
self.embed_dim = config.hidden_size
|
| 54 |
+
self.num_heads = config.num_attention_heads
|
| 55 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 56 |
+
self.split_size = self.embed_dim
|
| 57 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 58 |
+
raise ValueError(
|
| 59 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 60 |
+
f" {self.num_heads})."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
self.scale_attn_weights = config.scale_attn_weights
|
| 64 |
+
if is_cross_attention:
|
| 65 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
| 66 |
+
self.is_cross_attention = is_cross_attention
|
| 67 |
+
|
| 68 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
| 69 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
| 70 |
+
self.layer_idx = layer_idx
|
| 71 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
| 72 |
+
|
| 73 |
+
if self.is_cross_attention:
|
| 74 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
| 75 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
| 76 |
+
else:
|
| 77 |
+
# self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
| 78 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
| 79 |
+
# Keys and values are shared across heads
|
| 80 |
+
self.kv_attn = Conv1D(2 * self.head_dim, self.embed_dim)
|
| 81 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
| 82 |
+
|
| 83 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 84 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 85 |
+
|
| 86 |
+
self.pruned_heads = set()
|
| 87 |
+
|
| 88 |
+
def prune_heads(self, heads):
|
| 89 |
+
if len(heads) == 0:
|
| 90 |
+
return
|
| 91 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
| 92 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
| 93 |
+
|
| 94 |
+
# Prune conv1d layers
|
| 95 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
| 96 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
| 97 |
+
|
| 98 |
+
# Update hyper params
|
| 99 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
| 100 |
+
self.num_heads = self.num_heads - len(heads)
|
| 101 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 102 |
+
|
| 103 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 104 |
+
# query: (b, num_heads * sq, head_dim)
|
| 105 |
+
# key: (b, head_dim, sk)
|
| 106 |
+
# value: (b, sk, head_dim)
|
| 107 |
+
batch_size = query.size(0)
|
| 108 |
+
query_length = query.size(1) // self.num_heads
|
| 109 |
+
key_length = key.size(2)
|
| 110 |
+
# (b, num_heads * sq, head_dim) x (b, head_dim, sk) -> (b, num_heads * sq, sk)
|
| 111 |
+
attn_weights = torch.bmm(query, key)
|
| 112 |
+
# -> (b, num_heads, sq, sk)
|
| 113 |
+
attn_weights = attn_weights.view(batch_size, self.num_heads, query_length, key_length)
|
| 114 |
+
|
| 115 |
+
if self.scale_attn_weights:
|
| 116 |
+
attn_weights = attn_weights / torch.tensor(
|
| 117 |
+
value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Layer-wise attention scaling
|
| 121 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 122 |
+
attn_weights = attn_weights / float(self.layer_idx + 1)
|
| 123 |
+
|
| 124 |
+
if not self.is_cross_attention:
|
| 125 |
+
# if only "normal" attention layer implements causal mask
|
| 126 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
|
| 127 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 128 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 129 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 130 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
| 131 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 132 |
+
|
| 133 |
+
if attention_mask is not None:
|
| 134 |
+
# Apply the attention mask
|
| 135 |
+
attn_weights = attn_weights + attention_mask
|
| 136 |
+
|
| 137 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 138 |
+
|
| 139 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
| 140 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 141 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 142 |
+
|
| 143 |
+
# Mask heads if we want to
|
| 144 |
+
if head_mask is not None:
|
| 145 |
+
attn_weights = attn_weights * head_mask
|
| 146 |
+
|
| 147 |
+
# (b, num_heads, sq, sk) -> (b, num_heads * sq, sk)
|
| 148 |
+
_attn_weights = attn_weights.view(batch_size, self.num_heads * query_length, key_length)
|
| 149 |
+
# (b, num_heads * sq, sk) x (b, sk, head_dim) -> (b, num_heads * sq, head_dim)
|
| 150 |
+
attn_output = torch.bmm(_attn_weights, value)
|
| 151 |
+
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
| 152 |
+
|
| 153 |
+
return attn_output, attn_weights
|
| 154 |
+
|
| 155 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 156 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
| 157 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
| 158 |
+
_, _, k_seq_len, _ = key.size()
|
| 159 |
+
|
| 160 |
+
# Preallocate attn_weights for `baddbmm`
|
| 161 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
| 162 |
+
|
| 163 |
+
# Compute Scale Factor
|
| 164 |
+
scale_factor = 1.0
|
| 165 |
+
if self.scale_attn_weights:
|
| 166 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
| 167 |
+
|
| 168 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 169 |
+
scale_factor /= float(self.layer_idx + 1)
|
| 170 |
+
|
| 171 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
| 172 |
+
with autocast(enabled=False):
|
| 173 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
| 174 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
| 175 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
| 176 |
+
|
| 177 |
+
if not self.is_cross_attention:
|
| 178 |
+
# if only "normal" attention layer implements causal mask
|
| 179 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 180 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
|
| 181 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 182 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 183 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 184 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
| 185 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 186 |
+
|
| 187 |
+
if attention_mask is not None:
|
| 188 |
+
# Apply the attention mask
|
| 189 |
+
attn_weights = attn_weights + attention_mask
|
| 190 |
+
|
| 191 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 192 |
+
|
| 193 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
| 194 |
+
if attn_weights.dtype != torch.float32:
|
| 195 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
| 196 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 197 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 198 |
+
|
| 199 |
+
# Mask heads if we want to
|
| 200 |
+
if head_mask is not None:
|
| 201 |
+
attn_weights = attn_weights * head_mask
|
| 202 |
+
|
| 203 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 204 |
+
|
| 205 |
+
return attn_output, attn_weights
|
| 206 |
+
|
| 207 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
| 208 |
+
"""
|
| 209 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
| 210 |
+
"""
|
| 211 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
| 212 |
+
tensor = tensor.view(new_shape)
|
| 213 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
| 214 |
+
|
| 215 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
| 216 |
+
"""
|
| 217 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
| 218 |
+
"""
|
| 219 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 220 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
| 221 |
+
return tensor.view(new_shape)
|
| 222 |
+
|
| 223 |
+
def forward(
|
| 224 |
+
self,
|
| 225 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 226 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 227 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 228 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 229 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 230 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 231 |
+
use_cache: Optional[bool] = False,
|
| 232 |
+
output_attentions: Optional[bool] = False,
|
| 233 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 234 |
+
if encoder_hidden_states is not None:
|
| 235 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
| 236 |
+
if not hasattr(self, "q_attn"):
|
| 237 |
+
raise ValueError(
|
| 238 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 239 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
query = self.q_attn(hidden_states)
|
| 243 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
| 244 |
+
attention_mask = encoder_attention_mask
|
| 245 |
+
else:
|
| 246 |
+
query = self.q_attn(hidden_states)
|
| 247 |
+
key, value = self.kv_attn(hidden_states).split(self.head_dim, dim=2)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
batch_size, seq_length = query.shape[:2]
|
| 251 |
+
# (query_length, batch, num_heads, head_dim)
|
| 252 |
+
# (batch, num_heads * query_length, head_dim)\
|
| 253 |
+
|
| 254 |
+
# (batch, query_length, hidden_size) -> (batch, num_heads, query_length, head_dim)
|
| 255 |
+
query = query.view(batch_size, seq_length, self.num_heads, self.head_dim).permute([0, 2, 1, 3])
|
| 256 |
+
# -> (batch, num_heads * query_length, head_dim)
|
| 257 |
+
query = query.reshape(batch_size, self.num_heads * seq_length, self.head_dim)
|
| 258 |
+
|
| 259 |
+
# (batch, query_length, hidden_size) -> (batch, query_length * num_heads, head_dim)
|
| 260 |
+
# query = query.view(
|
| 261 |
+
# batch_size, seq_length, self.num_heads, self.head_dim,
|
| 262 |
+
# ).reshape(
|
| 263 |
+
# batch_size, seq_length * self.num_heads, self.head_dim
|
| 264 |
+
# )
|
| 265 |
+
key = key.permute(0, 2, 1) # (batch_size, head_dim, seq_length)
|
| 266 |
+
# value (batch_size, seq_length, head_dim)
|
| 267 |
+
|
| 268 |
+
if layer_past is not None:
|
| 269 |
+
past_key, past_value = layer_past
|
| 270 |
+
# Concatenate on sequence dimension
|
| 271 |
+
key = torch.cat((past_key, key), dim=-1)
|
| 272 |
+
value = torch.cat((past_value, value), dim=-2)
|
| 273 |
+
|
| 274 |
+
if use_cache is True:
|
| 275 |
+
present = (key, value)
|
| 276 |
+
else:
|
| 277 |
+
present = None
|
| 278 |
+
|
| 279 |
+
if self.reorder_and_upcast_attn:
|
| 280 |
+
raise NotImplementedError("Reorder and upcast attention not implemented for MQA")
|
| 281 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
| 282 |
+
else:
|
| 283 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
| 284 |
+
|
| 285 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
| 286 |
+
attn_output = self.c_proj(attn_output)
|
| 287 |
+
attn_output = self.resid_dropout(attn_output)
|
| 288 |
+
|
| 289 |
+
outputs = (attn_output, present)
|
| 290 |
+
if output_attentions:
|
| 291 |
+
outputs += (attn_weights,)
|
| 292 |
+
|
| 293 |
+
return outputs # a, present, (attentions)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
# inherit from gpt_modeling.py, and override `attn` module
|
| 297 |
+
class GPT2CustomBlock(GPT2Block):
|
| 298 |
+
|
| 299 |
+
def __init__(self, config: GPT2CustomConfig, layer_idx=None):
|
| 300 |
+
super().__init__(config, layer_idx)
|
| 301 |
+
# Override attention module if using multiquery
|
| 302 |
+
if config.attention_head_type == MULTI_QUERY:
|
| 303 |
+
self.attn = GPT2MQAttention(config, layer_idx=layer_idx)
|
| 304 |
+
if config.add_cross_attention:
|
| 305 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# inherit from gpt_modeling.py and override `__init__` method
|
| 309 |
+
class GPT2CustomModel(GPT2Model):
|
| 310 |
+
config_class = GPT2CustomConfig
|
| 311 |
+
|
| 312 |
+
def __init__(self, config):
|
| 313 |
+
GPT2PreTrainedModel.__init__(self, config)
|
| 314 |
+
|
| 315 |
+
self.embed_dim = config.hidden_size
|
| 316 |
+
|
| 317 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 318 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
| 319 |
+
|
| 320 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 321 |
+
self.h = nn.ModuleList([GPT2CustomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
| 322 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 323 |
+
|
| 324 |
+
# Model parallel
|
| 325 |
+
self.model_parallel = False
|
| 326 |
+
self.device_map = None
|
| 327 |
+
self.gradient_checkpointing = False
|
| 328 |
+
|
| 329 |
+
# Initialize weights and apply final processing
|
| 330 |
+
self.post_init()
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class GPT2LMHeadCustomModel(GPT2LMHeadModel):
|
| 334 |
+
config_class = GPT2CustomConfig
|
| 335 |
+
|
| 336 |
+
def __init__(self, config):
|
| 337 |
+
GPT2PreTrainedModel.__init__(self, config)
|
| 338 |
+
self.transformer = GPT2CustomModel(config)
|
| 339 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 340 |
+
|
| 341 |
+
# Model parallel
|
| 342 |
+
self.model_parallel = False
|
| 343 |
+
self.device_map = None
|
| 344 |
+
|
| 345 |
+
# Initialize weights and apply final processing
|
| 346 |
+
self.post_init()
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c78cb3745c1de3f4435412cd918c152555f4379cceba82ad79eda6ec85465af
|
| 3 |
+
size 4600333857
|