ArneJa commited on
Commit
0934858
1 Parent(s): 7b5949e

First try with RL

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 254.51 +/- 23.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c92112fbb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c92112fbbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c92112fbc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c92112fbd00>", "_build": "<function ActorCriticPolicy._build at 0x7c92112fbd90>", "forward": "<function ActorCriticPolicy.forward at 0x7c92112fbe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c92112fbeb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c92112fbf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7c9211308040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c92113080d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9211308160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c92113081f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c9211304380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692798330777625390, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAV+73p9SG8hkF0PdpEKjxBnH+9eCHpvQAAgD8AAIA/89UxPtRThLzwAQg7J1KAuVCq6r2TtUu6AACAPwAAgD+WsqY+FGBHP2MW4z2v0dm+ET9JPg6jAr0AAAAAAAAAAPMllz0sGgg+jSvTvRLIMb6brI+8ezspvQAAAAAAAAAAGpTNPn8wUj/i/og++wfyvngtoT4gXPu8AAAAAAAAAADQa4g+rss/P/pbhrylmca+OVb1PYIwVr0AAAAAAAAAAACY2zsarVI+w50kvUW5Y75Xrzi86sTRtwAAAAAAAAAAM3MxPo+haLzC/GM7Q3WJuS+h1L0qFpK6AACAPwAAgD/GtFQ+FFFDPpoSAb4OHIK+4jcfPYqWLr0AAAAAAAAAAEZoRr7VPLM+TaIPPjUmkL7cnDy9cPjKPQAAAAAAAAAAM0vdu1Zxjz/KrJ+7J94Ev0nY0LsrUlw8AAAAAAAAAADt5j2+NK6EvKVSQDvlpIE5NWjzPfU6dboAAIA/AACAP824tTwfCJw+9rLcPC87l75mdpO8BYSPvQAAAAAAAAAAwBGQPkIaJz/LcHi9dpKzviuTyz3Sy3O9AAAAAAAAAADmO7Q9H+WpPnWnC74FKaW+J5ZGPJXo9LoAAAAAAAAAAKZxTj6AFoI/+DsPP3HQ3L63ylQ+CUoVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+qZq20AtGMAWyUS+mMAXSUR0CfbaqFh5PedX2UKGgGR0BwO9u89Oh1aAdL+2gIR0CfbgYcvM8pdX2UKGgGR0BwC1cLSeAeaAdL9GgIR0CfbiiD/VAidX2UKGgGR0BlY+zF+/g0aAdN6ANoCEdAn28mmk30gHV9lChoBkdAQfZ5E+gUUWgHS9JoCEdAn3E3ck+otXV9lChoBkdAcIFl2/zreWgHS/FoCEdAn3Jty925hHV9lChoBkdAbNIO8TSLImgHS/ZoCEdAn3Lhri2lVXV9lChoBkdAcDAV+7UXpGgHS/poCEdAn3Sz15B1LnV9lChoBkdAcn9mwJPZZmgHS/NoCEdAn3UkQbuMM3V9lChoBkdActyLwnYxtmgHTQcBaAhHQJ91opd8iOh1fZQoaAZHQGKUzoEB8x9oB03oA2gIR0CfdoM4cWCVdX2UKGgGR0BwG7peNT99aAdNFQFoCEdAn3cXNTtLMHV9lChoBkdAcliWGh24eGgHS/NoCEdAn3dfCAMDwHV9lChoBkdAbN26xxDLKWgHTQEBaAhHQJ94JvaURnR1fZQoaAZHQG5E6lchTwVoB0v5aAhHQJ95DiXIEKV1fZQoaAZHQG/Uy9/SYw9oB0v3aAhHQJ95fhl18st1fZQoaAZHQHDMaOo5xR5oB00MAWgIR0CfekO1OTJRdX2UKGgGR0BxVmrn1WbPaAdNCwFoCEdAn3tQV0tAcHV9lChoBkdAcPxtYSxqwmgHS95oCEdAn3tnvYvnKXV9lChoBkdAcY/0dBBzFWgHS91oCEdAn3zYo/iYLXV9lChoBkdAceWv2Xb/O2gHTRgBaAhHQJ9/LJaJQ+F1fZQoaAZHQG0Qza0x/NJoB0vsaAhHQJ9/ZSbYsd11fZQoaAZHQG5KY8dPtUpoB0vgaAhHQJ+BlvjwQUZ1fZQoaAZHQHD1c9bHIZJoB00KAWgIR0Cfgco8p1A8dX2UKGgGR0Bio1xZMcp9aAdN6ANoCEdAn4NoSHuZ1HV9lChoBkdAcGYsbNr0rmgHTQ0BaAhHQJ+Dj6pHZsd1fZQoaAZHQHKZcWbgCOpoB00bAWgIR0Cfg5p0wJw9dX2UKGgGR0Bv9m2CuloEaAdL92gIR0Cfg5V8CxNZdX2UKGgGR0BuxpVMmF8HaAdNQAFoCEdAn4PEWuX/pHV9lChoBkdAcMLQwK0D2mgHS/ZoCEdAn4TPiHZbp3V9lChoBkdAcBUxJd0JW2gHTSEBaAhHQJ+FRchTwUh1fZQoaAZHQHCfiCrcTJ1oB00jAWgIR0CfhaMnqmj1dX2UKGgGR0BwsUz1schlaAdL/2gIR0CfhdtlI3BIdX2UKGgGR0BwJUuRLbpNaAdNDQFoCEdAn4YlPi1iOXV9lChoBkdAcHVuqWC2+mgHS/RoCEdAn4ZwpSaVlnV9lChoBkdAcRvXAuZkTmgHS/BoCEdAn4ezasZHeHV9lChoBkdAb0vgqmTC+GgHTQgBaAhHQJ+IUahpQDV1fZQoaAZHQGF4J/XoTwloB03oA2gIR0CfiSqVyFPBdX2UKGgGR0BGCT+FUQ05aAdL8WgIR0CfilhS9/SZdX2UKGgGR0BygCSidrftaAdNGgFoCEdAn4qHta6jFnV9lChoBkdAcRE87ZFoc2gHS/RoCEdAn4qbo8p1BHV9lChoBkdAbNXBcAzYVmgHS/poCEdAn4rAgxJumHV9lChoBkdAbq2DM/yGz2gHS/xoCEdAn4rP+XJHRXV9lChoBkdActIsXzlLe2gHTSkBaAhHQJ+LCGzru6V1fZQoaAZHQHDXlI3BHkNoB0viaAhHQJ+MEhX8wYd1fZQoaAZHQG/KONgjQiRoB0vzaAhHQJ+MNESdvsJ1fZQoaAZHQHL6ktEofCBoB0vqaAhHQJ+Mf0g8r7R1fZQoaAZHQHBKPkaMrEtoB0vuaAhHQJ+NN8c+7lJ1fZQoaAZHQHDZYg3cYZVoB00TAWgIR0CfjfOUMXrMdX2UKGgGR0Bwbtb9qDbraAdL5WgIR0Cfjlkiliz+dX2UKGgGR0Bwc5qL0jC6aAdNHgFoCEdAn5C8XaakRHV9lChoBkdAbRnaTOgQH2gHS/doCEdAn5Gxp+MIeHV9lChoBkdAcb3f7rLQomgHS/hoCEdAn5HWIKtxMnV9lChoBkdAce3rK/20zGgHTSgBaAhHQJ+SAxVQyh11fZQoaAZHQHC9iW/rSmZoB0v7aAhHQJ+SGsaKk2x1fZQoaAZHQG60cQZn+Q5oB0vwaAhHQJ+SHN5dGAl1fZQoaAZHQHFUg75mAb1oB00jAWgIR0Cfkt77sOXmdX2UKGgGR0ByQ3nX/YJ3aAdL7GgIR0Cfk0IZ62ORdX2UKGgGR0Byhn1wo9cKaAdNJAFoCEdAn5NdAC4jKXV9lChoBkdAckbVDa4+bGgHTQwBaAhHQJ+UB8Z1mrd1fZQoaAZHQETtQnhKlHloB0vmaAhHQJ+U5mbsniN1fZQoaAZHQHIebT+ee4FoB0vbaAhHQJ+VA8p1A7h1fZQoaAZHQHBYJQk5ZKZoB00QAWgIR0CflV17pmmMdX2UKGgGR0BwNMbCJoCdaAdL/2gIR0CfmIIhyKekdX2UKGgGR0BxRwN5MURGaAdL4WgIR0CfmJKZUkv9dX2UKGgGR0BwmMFQl8gIaAdL5mgIR0CfmO4X40uUdX2UKGgGR0Bxdc31jAi3aAdL/GgIR0CfmWAzHjp+dX2UKGgGR0Bx8uB6KLsKaAdL+mgIR0CfmbJuVHFxdX2UKGgGR0BwW7pgTh5xaAdNAgFoCEdAn5n/AfuCw3V9lChoBkdAQZT1kDp1R2gHS/VoCEdAn5rzlDF6zHV9lChoBkdAcYIEw35vcmgHTQsBaAhHQJ+bQXqJMxp1fZQoaAZHQG7V1mBe5WloB0vyaAhHQJ+buIxgy/N1fZQoaAZHQHB512zOX3RoB00XAWgIR0CfnB9Jz1brdX2UKGgGR0BxR1wrDqGDaAdL9mgIR0CfnL7VJ+UhdX2UKGgGR0BwteUILPUsaAdNEQFoCEdAn52xQWN3n3V9lChoBkdAcjnf9xZMc2gHS/loCEdAn6DEMgEEDHV9lChoBkdAcvVaDPGACmgHS/doCEdAn6GVyBClanV9lChoBkdAcJsawljVhGgHTRABaAhHQJ+hlqxkd3l1fZQoaAZHQHF0itRvWH1oB00SAWgIR0Cfoh4e9zwMdX2UKGgGR0BfNmX1J17qaAdN6ANoCEdAn6JONPxhD3V9lChoBkdAcaiNyo4uLGgHS+poCEdAn6K0s8PnS3V9lChoBkdAcCsbcXWOImgHS/ZoCEdAn6Nomb9ZR3V9lChoBkdAYZZzgdfb9WgHTegDaAhHQJ+jlYyO7xx1fZQoaAZHQHL4mZRbbDdoB0v8aAhHQJ+kF6Ww/xF1fZQoaAZHQG4Fj0L+glFoB00FAWgIR0CfpM90zTF3dX2UKGgGR0BwxGY5T6zmaAdNDAFoCEdAn6WvfO2RaHV9lChoBkdAcSrdIXj2jGgHS/NoCEdAn6XcYZVGTnV9lChoBkdAboMJmdy1eGgHS+poCEdAn6iMbedkKHV9lChoBkdAcRmgNPP9k2gHTQUBaAhHQJ+qYwlByCF1fZQoaAZHQHHqbNGEwnJoB0v4aAhHQJ+qbF3pwCN1fZQoaAZHQHJdKqS5iExoB00kAWgIR0Cfq7Tg2qDLdX2UKGgGR0BunEc6vJRwaAdL+WgIR0CfrE1eBxxUdX2UKGgGR0BxiTGhmGucaAdNDgFoCEdAn6xN6Tnq3XV9lChoBkdAcI0nl4keIWgHS/RoCEdAn6xa37UG3XV9lChoBkdAbwAeOGTLXGgHTSwBaAhHQJ+tNCngpBp1fZQoaAZHQGL5QRf4REpoB03oA2gIR0CfrZZ7HAARdX2UKGgGR0BwRZusLfDUaAdNBgFoCEdAn63m1D0Dl3V9lChoBkdAcJL26TW5H2gHS/9oCEdAn66I2GZeA3V9lChoBkdAcYTyJ9AoomgHS/doCEdAn69e/k/8mHV9lChoBkdAcSejjJdSl2gHTQEBaAhHQJ+wCALApKB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
model_LunaLander_Arne.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7b1155773f3371ea5c505f82c557ec3082c08ec739808ea981dbaa8322121e4
3
+ size 146681
model_LunaLander_Arne/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
model_LunaLander_Arne/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c92112fbb50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c92112fbbe0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c92112fbc70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c92112fbd00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c92112fbd90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c92112fbe20>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c92112fbeb0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c92112fbf40>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c9211308040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c92113080d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c9211308160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c92113081f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c9211304380>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1692798330777625390,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAV+73p9SG8hkF0PdpEKjxBnH+9eCHpvQAAgD8AAIA/89UxPtRThLzwAQg7J1KAuVCq6r2TtUu6AACAPwAAgD+WsqY+FGBHP2MW4z2v0dm+ET9JPg6jAr0AAAAAAAAAAPMllz0sGgg+jSvTvRLIMb6brI+8ezspvQAAAAAAAAAAGpTNPn8wUj/i/og++wfyvngtoT4gXPu8AAAAAAAAAADQa4g+rss/P/pbhrylmca+OVb1PYIwVr0AAAAAAAAAAACY2zsarVI+w50kvUW5Y75Xrzi86sTRtwAAAAAAAAAAM3MxPo+haLzC/GM7Q3WJuS+h1L0qFpK6AACAPwAAgD/GtFQ+FFFDPpoSAb4OHIK+4jcfPYqWLr0AAAAAAAAAAEZoRr7VPLM+TaIPPjUmkL7cnDy9cPjKPQAAAAAAAAAAM0vdu1Zxjz/KrJ+7J94Ev0nY0LsrUlw8AAAAAAAAAADt5j2+NK6EvKVSQDvlpIE5NWjzPfU6dboAAIA/AACAP824tTwfCJw+9rLcPC87l75mdpO8BYSPvQAAAAAAAAAAwBGQPkIaJz/LcHi9dpKzviuTyz3Sy3O9AAAAAAAAAADmO7Q9H+WpPnWnC74FKaW+J5ZGPJXo9LoAAAAAAAAAAKZxTj6AFoI/+DsPP3HQ3L63ylQ+CUoVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVDAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+qZq20AtGMAWyUS+mMAXSUR0CfbaqFh5PedX2UKGgGR0BwO9u89Oh1aAdL+2gIR0CfbgYcvM8pdX2UKGgGR0BwC1cLSeAeaAdL9GgIR0CfbiiD/VAidX2UKGgGR0BlY+zF+/g0aAdN6ANoCEdAn28mmk30gHV9lChoBkdAQfZ5E+gUUWgHS9JoCEdAn3E3ck+otXV9lChoBkdAcIFl2/zreWgHS/FoCEdAn3Jty925hHV9lChoBkdAbNIO8TSLImgHS/ZoCEdAn3Lhri2lVXV9lChoBkdAcDAV+7UXpGgHS/poCEdAn3Sz15B1LnV9lChoBkdAcn9mwJPZZmgHS/NoCEdAn3UkQbuMM3V9lChoBkdActyLwnYxtmgHTQcBaAhHQJ91opd8iOh1fZQoaAZHQGKUzoEB8x9oB03oA2gIR0CfdoM4cWCVdX2UKGgGR0BwG7peNT99aAdNFQFoCEdAn3cXNTtLMHV9lChoBkdAcliWGh24eGgHS/NoCEdAn3dfCAMDwHV9lChoBkdAbN26xxDLKWgHTQEBaAhHQJ94JvaURnR1fZQoaAZHQG5E6lchTwVoB0v5aAhHQJ95DiXIEKV1fZQoaAZHQG/Uy9/SYw9oB0v3aAhHQJ95fhl18st1fZQoaAZHQHDMaOo5xR5oB00MAWgIR0CfekO1OTJRdX2UKGgGR0BxVmrn1WbPaAdNCwFoCEdAn3tQV0tAcHV9lChoBkdAcPxtYSxqwmgHS95oCEdAn3tnvYvnKXV9lChoBkdAcY/0dBBzFWgHS91oCEdAn3zYo/iYLXV9lChoBkdAceWv2Xb/O2gHTRgBaAhHQJ9/LJaJQ+F1fZQoaAZHQG0Qza0x/NJoB0vsaAhHQJ9/ZSbYsd11fZQoaAZHQG5KY8dPtUpoB0vgaAhHQJ+BlvjwQUZ1fZQoaAZHQHD1c9bHIZJoB00KAWgIR0Cfgco8p1A8dX2UKGgGR0Bio1xZMcp9aAdN6ANoCEdAn4NoSHuZ1HV9lChoBkdAcGYsbNr0rmgHTQ0BaAhHQJ+Dj6pHZsd1fZQoaAZHQHKZcWbgCOpoB00bAWgIR0Cfg5p0wJw9dX2UKGgGR0Bv9m2CuloEaAdL92gIR0Cfg5V8CxNZdX2UKGgGR0BuxpVMmF8HaAdNQAFoCEdAn4PEWuX/pHV9lChoBkdAcMLQwK0D2mgHS/ZoCEdAn4TPiHZbp3V9lChoBkdAcBUxJd0JW2gHTSEBaAhHQJ+FRchTwUh1fZQoaAZHQHCfiCrcTJ1oB00jAWgIR0CfhaMnqmj1dX2UKGgGR0BwsUz1schlaAdL/2gIR0CfhdtlI3BIdX2UKGgGR0BwJUuRLbpNaAdNDQFoCEdAn4YlPi1iOXV9lChoBkdAcHVuqWC2+mgHS/RoCEdAn4ZwpSaVlnV9lChoBkdAcRvXAuZkTmgHS/BoCEdAn4ezasZHeHV9lChoBkdAb0vgqmTC+GgHTQgBaAhHQJ+IUahpQDV1fZQoaAZHQGF4J/XoTwloB03oA2gIR0CfiSqVyFPBdX2UKGgGR0BGCT+FUQ05aAdL8WgIR0CfilhS9/SZdX2UKGgGR0BygCSidrftaAdNGgFoCEdAn4qHta6jFnV9lChoBkdAcRE87ZFoc2gHS/RoCEdAn4qbo8p1BHV9lChoBkdAbNXBcAzYVmgHS/poCEdAn4rAgxJumHV9lChoBkdAbq2DM/yGz2gHS/xoCEdAn4rP+XJHRXV9lChoBkdActIsXzlLe2gHTSkBaAhHQJ+LCGzru6V1fZQoaAZHQHDXlI3BHkNoB0viaAhHQJ+MEhX8wYd1fZQoaAZHQG/KONgjQiRoB0vzaAhHQJ+MNESdvsJ1fZQoaAZHQHL6ktEofCBoB0vqaAhHQJ+Mf0g8r7R1fZQoaAZHQHBKPkaMrEtoB0vuaAhHQJ+NN8c+7lJ1fZQoaAZHQHDZYg3cYZVoB00TAWgIR0CfjfOUMXrMdX2UKGgGR0Bwbtb9qDbraAdL5WgIR0Cfjlkiliz+dX2UKGgGR0Bwc5qL0jC6aAdNHgFoCEdAn5C8XaakRHV9lChoBkdAbRnaTOgQH2gHS/doCEdAn5Gxp+MIeHV9lChoBkdAcb3f7rLQomgHS/hoCEdAn5HWIKtxMnV9lChoBkdAce3rK/20zGgHTSgBaAhHQJ+SAxVQyh11fZQoaAZHQHC9iW/rSmZoB0v7aAhHQJ+SGsaKk2x1fZQoaAZHQG60cQZn+Q5oB0vwaAhHQJ+SHN5dGAl1fZQoaAZHQHFUg75mAb1oB00jAWgIR0Cfkt77sOXmdX2UKGgGR0ByQ3nX/YJ3aAdL7GgIR0Cfk0IZ62ORdX2UKGgGR0Byhn1wo9cKaAdNJAFoCEdAn5NdAC4jKXV9lChoBkdAckbVDa4+bGgHTQwBaAhHQJ+UB8Z1mrd1fZQoaAZHQETtQnhKlHloB0vmaAhHQJ+U5mbsniN1fZQoaAZHQHIebT+ee4FoB0vbaAhHQJ+VA8p1A7h1fZQoaAZHQHBYJQk5ZKZoB00QAWgIR0CflV17pmmMdX2UKGgGR0BwNMbCJoCdaAdL/2gIR0CfmIIhyKekdX2UKGgGR0BxRwN5MURGaAdL4WgIR0CfmJKZUkv9dX2UKGgGR0BwmMFQl8gIaAdL5mgIR0CfmO4X40uUdX2UKGgGR0Bxdc31jAi3aAdL/GgIR0CfmWAzHjp+dX2UKGgGR0Bx8uB6KLsKaAdL+mgIR0CfmbJuVHFxdX2UKGgGR0BwW7pgTh5xaAdNAgFoCEdAn5n/AfuCw3V9lChoBkdAQZT1kDp1R2gHS/VoCEdAn5rzlDF6zHV9lChoBkdAcYIEw35vcmgHTQsBaAhHQJ+bQXqJMxp1fZQoaAZHQG7V1mBe5WloB0vyaAhHQJ+buIxgy/N1fZQoaAZHQHB512zOX3RoB00XAWgIR0CfnB9Jz1brdX2UKGgGR0BxR1wrDqGDaAdL9mgIR0CfnL7VJ+UhdX2UKGgGR0BwteUILPUsaAdNEQFoCEdAn52xQWN3n3V9lChoBkdAcjnf9xZMc2gHS/loCEdAn6DEMgEEDHV9lChoBkdAcvVaDPGACmgHS/doCEdAn6GVyBClanV9lChoBkdAcJsawljVhGgHTRABaAhHQJ+hlqxkd3l1fZQoaAZHQHF0itRvWH1oB00SAWgIR0Cfoh4e9zwMdX2UKGgGR0BfNmX1J17qaAdN6ANoCEdAn6JONPxhD3V9lChoBkdAcaiNyo4uLGgHS+poCEdAn6K0s8PnS3V9lChoBkdAcCsbcXWOImgHS/ZoCEdAn6Nomb9ZR3V9lChoBkdAYZZzgdfb9WgHTegDaAhHQJ+jlYyO7xx1fZQoaAZHQHL4mZRbbDdoB0v8aAhHQJ+kF6Ww/xF1fZQoaAZHQG4Fj0L+glFoB00FAWgIR0CfpM90zTF3dX2UKGgGR0BwxGY5T6zmaAdNDAFoCEdAn6WvfO2RaHV9lChoBkdAcSrdIXj2jGgHS/NoCEdAn6XcYZVGTnV9lChoBkdAboMJmdy1eGgHS+poCEdAn6iMbedkKHV9lChoBkdAcRmgNPP9k2gHTQUBaAhHQJ+qYwlByCF1fZQoaAZHQHHqbNGEwnJoB0v4aAhHQJ+qbF3pwCN1fZQoaAZHQHJdKqS5iExoB00kAWgIR0Cfq7Tg2qDLdX2UKGgGR0BunEc6vJRwaAdL+WgIR0CfrE1eBxxUdX2UKGgGR0BxiTGhmGucaAdNDgFoCEdAn6xN6Tnq3XV9lChoBkdAcI0nl4keIWgHS/RoCEdAn6xa37UG3XV9lChoBkdAbwAeOGTLXGgHTSwBaAhHQJ+tNCngpBp1fZQoaAZHQGL5QRf4REpoB03oA2gIR0CfrZZ7HAARdX2UKGgGR0BwRZusLfDUaAdNBgFoCEdAn63m1D0Dl3V9lChoBkdAcJL26TW5H2gHS/9oCEdAn66I2GZeA3V9lChoBkdAcYTyJ9AoomgHS/doCEdAn69e/k/8mHV9lChoBkdAcSejjJdSl2gHTQEBaAhHQJ+wCALApKB1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 320,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
model_LunaLander_Arne/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d47baae1842a13d8824ce33d6f1876bf66ab9da5f3a92042f0d56ea74b7c33b
3
+ size 87929
model_LunaLander_Arne/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a03ff92f156a67829f963896bdf666e2d63079f1a03f6ad15a524d074442c12a
3
+ size 43329
model_LunaLander_Arne/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
model_LunaLander_Arne/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 254.5120082, "std_reward": 23.98569157965242, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-23T14:20:48.616582"}