ArtYac commited on
Commit
af4c601
1 Parent(s): 0c4399e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.45 +/- 1.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:015d7d317688aaa463190a28d5f24c11ea1292ecfa7125d20a75b6935eef9d2b
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f365d667af0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f365d663990>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677619331435589551,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnz7hPvNFALwbBg8/nz7hPvNFALwbBg8/nz7hPvNFALwbBg8/nz7hPvNFALwbBg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkGK9vxodvz8Kb72+fwq1v8OKpb+TtJW/b7DWP2vKHz/cuyM/uiPLv6jGrr02c28+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4399309 -0.00782918 0.5586869 ]\n [ 0.4399309 -0.00782918 0.5586869 ]\n [ 0.4399309 -0.00782918 0.5586869 ]\n [ 0.4399309 -0.00782918 0.5586869 ]]",
60
+ "desired_goal": "[[-1.4795704 1.4930756 -0.3699878 ]\n [-1.4143828 -1.2932972 -1.1695732 ]\n [ 1.6772593 0.6241824 0.63958526]\n [-1.5870278 -0.08533984 0.23383793]]",
61
+ "observation": "[[ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]\n [ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]\n [ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]\n [ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ6JfvBsGFT6dFqQ9bQO2vaRl6zzR7wU+CeYAvgcrs70YnLc9hD/vPYNkwb3ESDg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.01364953 0.1455311 0.08012126]\n [-0.08887372 0.02873499 0.13079764]\n [-0.12587751 -0.08748441 0.08965319]\n [ 0.11682037 -0.09442999 0.17996508]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVft0PGag5r+UhpRSlIwBbJRLMowBdJRHQKj1f7Z39rJ1fZQoaAZoCWgPQwhxHHi13DkAwJSGlFKUaBVLMmgWR0Co9UInBtUGdX2UKGgGaAloD0MII/Qz9bolCMCUhpRSlGgVSzJoFkdAqPUD/4qPO3V9lChoBmgJaA9DCOigSzj01vC/lIaUUpRoFUsyaBZHQKj0xi9Zid91fZQoaAZoCWgPQwhPzHoxlNMVwJSGlFKUaBVLMmgWR0Co93P1L8JldX2UKGgGaAloD0MICfmgZ7Oq9L+UhpRSlGgVSzJoFkdAqPc2sLfDUHV9lChoBmgJaA9DCAbYR6euPAzAlIaUUpRoFUsyaBZHQKj2+HwgDA91fZQoaAZoCWgPQwjfGAKAY28FwJSGlFKUaBVLMmgWR0Co9rsmnfl7dX2UKGgGaAloD0MIwLD8+bag+r+UhpRSlGgVSzJoFkdAqPigFTvRZ3V9lChoBmgJaA9DCDqxh/axwhPAlIaUUpRoFUsyaBZHQKj4YZ7Xxvx1fZQoaAZoCWgPQwiBsilXeJcGwJSGlFKUaBVLMmgWR0Co+CJxFRYSdX2UKGgGaAloD0MIfcwHBDpT9L+UhpRSlGgVSzJoFkdAqPfkHObAlHV9lChoBmgJaA9DCJRNucK7vATAlIaUUpRoFUsyaBZHQKj5rhJiAlR1fZQoaAZoCWgPQwjyzqEMVWETwJSGlFKUaBVLMmgWR0Co+W+Myad+dX2UKGgGaAloD0MItwpioGuf9L+UhpRSlGgVSzJoFkdAqPkwKBun/HV9lChoBmgJaA9DCOhn6nWLoAXAlIaUUpRoFUsyaBZHQKj48cVgx8F1fZQoaAZoCWgPQwiGAODYsyf8v5SGlFKUaBVLMmgWR0Co+tNK7I1cdX2UKGgGaAloD0MIWI/7VutE8b+UhpRSlGgVSzJoFkdAqPqUupS75HV9lChoBmgJaA9DCPUwtDo5gwnAlIaUUpRoFUsyaBZHQKj6VY+0PYp1fZQoaAZoCWgPQwgoui784FwAwJSGlFKUaBVLMmgWR0Co+hcrAgxKdX2UKGgGaAloD0MIpmH4iJgyA8CUhpRSlGgVSzJoFkdAqPvw4GUwBnV9lChoBmgJaA9DCMrhk04kmADAlIaUUpRoFUsyaBZHQKj7soTfzjF1fZQoaAZoCWgPQwidEhCTcKHzv5SGlFKUaBVLMmgWR0Co+3Nnf2sadX2UKGgGaAloD0MIVoFaDB6GAcCUhpRSlGgVSzJoFkdAqPs1JOFg2XV9lChoBmgJaA9DCIe/JmvUw/6/lIaUUpRoFUsyaBZHQKj9DE4Nqg11fZQoaAZoCWgPQwgp6sw9JHz0v5SGlFKUaBVLMmgWR0Co/M26kIomdX2UKGgGaAloD0MIqIqp9BP+EMCUhpRSlGgVSzJoFkdAqPyOcUdq+XV9lChoBmgJaA9DCLiwbrw7Mv+/lIaUUpRoFUsyaBZHQKj8T+4smOV1fZQoaAZoCWgPQwiNJEG4Aor4v5SGlFKUaBVLMmgWR0Co/hnDR+jNdX2UKGgGaAloD0MI+n3/5sXJBsCUhpRSlGgVSzJoFkdAqP3bA57w8XV9lChoBmgJaA9DCIffTbfs0ADAlIaUUpRoFUsyaBZHQKj9m5lvqC91fZQoaAZoCWgPQwikHMwmwBAHwJSGlFKUaBVLMmgWR0Co/Vz8P4EfdX2UKGgGaAloD0MI9Q63Q8Mi8b+UhpRSlGgVSzJoFkdAqP8wy2x6fXV9lChoBmgJaA9DCIfddwyP/QfAlIaUUpRoFUsyaBZHQKj+8lXRw611fZQoaAZoCWgPQwgX8DLDRhn5v5SGlFKUaBVLMmgWR0Co/rMS00FbdX2UKGgGaAloD0MI2nIuxVWl+L+UhpRSlGgVSzJoFkdAqP50dvKlpHV9lChoBmgJaA9DCPzjvWplwgfAlIaUUpRoFUsyaBZHQKkAP0cOskp1fZQoaAZoCWgPQwjPZWoSvKEGwJSGlFKUaBVLMmgWR0CpAAC/fwZwdX2UKGgGaAloD0MINzXQfM4dA8CUhpRSlGgVSzJoFkdAqP/BjhDPW3V9lChoBmgJaA9DCFLwFHKlHgfAlIaUUpRoFUsyaBZHQKj/gzHjp9t1fZQoaAZoCWgPQwhuhhvw+aH6v5SGlFKUaBVLMmgWR0CpAWP/io87dX2UKGgGaAloD0MIBDi9i/dDAsCUhpRSlGgVSzJoFkdAqQElrM1TBXV9lChoBmgJaA9DCPfmN0w0aAPAlIaUUpRoFUsyaBZHQKkA5ooNNJx1fZQoaAZoCWgPQwhVh9wMN0ALwJSGlFKUaBVLMmgWR0CpAKgbADaHdX2UKGgGaAloD0MIOey+Y3gMCsCUhpRSlGgVSzJoFkdAqQJ9l9SdfHV9lChoBmgJaA9DCDZbecn/ZP+/lIaUUpRoFUsyaBZHQKkCP0JWvKV1fZQoaAZoCWgPQwj8NO7Nb3gMwJSGlFKUaBVLMmgWR0CpAgAWac7RdX2UKGgGaAloD0MIYwtBDko4B8CUhpRSlGgVSzJoFkdAqQHBgJC0GHV9lChoBmgJaA9DCGDpfHiWQBHAlIaUUpRoFUsyaBZHQKkDmgf2bod1fZQoaAZoCWgPQwiMu0G0VvT7v5SGlFKUaBVLMmgWR0CpA1tjkMkQdX2UKGgGaAloD0MI/YaJBik4CMCUhpRSlGgVSzJoFkdAqQMcMCtA9nV9lChoBmgJaA9DCD6Skh6GtgnAlIaUUpRoFUsyaBZHQKkC3ch1Tzd1fZQoaAZoCWgPQwj2Yb1RKwz8v5SGlFKUaBVLMmgWR0CpBKstsenydX2UKGgGaAloD0MI4ExMF2K1+L+UhpRSlGgVSzJoFkdAqQRtA3T/hnV9lChoBmgJaA9DCLXf2omSsAPAlIaUUpRoFUsyaBZHQKkELd56dDp1fZQoaAZoCWgPQwhWR450Bob1v5SGlFKUaBVLMmgWR0CpA+9Nvfj0dX2UKGgGaAloD0MInyKHiJvTDcCUhpRSlGgVSzJoFkdAqQWrHOryUnV9lChoBmgJaA9DCCcUIuAQChDAlIaUUpRoFUsyaBZHQKkFbHKfWc11fZQoaAZoCWgPQwjt9e6P9woPwJSGlFKUaBVLMmgWR0CpBS1FhG6PdX2UKGgGaAloD0MIvhQeNLuOAMCUhpRSlGgVSzJoFkdAqQTu1OTJQ3V9lChoBmgJaA9DCNsy4CwlC/W/lIaUUpRoFUsyaBZHQKkGxvVmSQp1fZQoaAZoCWgPQwgG9MKdC2P/v5SGlFKUaBVLMmgWR0CpBoiT+vQodX2UKGgGaAloD0MIgbT/AdaqB8CUhpRSlGgVSzJoFkdAqQZJaTwDvHV9lChoBmgJaA9DCGsNpfYiWhDAlIaUUpRoFUsyaBZHQKkGCtozvZ11fZQoaAZoCWgPQwih2AqalggQwJSGlFKUaBVLMmgWR0CpB9utW+49dX2UKGgGaAloD0MI9wKzQpFOBMCUhpRSlGgVSzJoFkdAqQedEVnEl3V9lChoBmgJaA9DCLPROT/Fsfy/lIaUUpRoFUsyaBZHQKkHXabnX/Z1fZQoaAZoCWgPQwhNgjekUWESwJSGlFKUaBVLMmgWR0CpBx8qnWJ8dX2UKGgGaAloD0MIBwd7E0PyB8CUhpRSlGgVSzJoFkdAqQjqWRigCnV9lChoBmgJaA9DCE33OqkvSwXAlIaUUpRoFUsyaBZHQKkIq+j/Mnt1fZQoaAZoCWgPQwj3zJIANRUCwJSGlFKUaBVLMmgWR0CpCGyhi9ZidX2UKGgGaAloD0MIQkKUL2jBCMCUhpRSlGgVSzJoFkdAqQguEoOQQ3V9lChoBmgJaA9DCMpuZvSjwQbAlIaUUpRoFUsyaBZHQKkKApG4I8h1fZQoaAZoCWgPQwjzPo7myAryv5SGlFKUaBVLMmgWR0CpCcQQL/jsdX2UKGgGaAloD0MIafzCK0leCcCUhpRSlGgVSzJoFkdAqQmE+/xlQXV9lChoBmgJaA9DCAltOZfi6gnAlIaUUpRoFUsyaBZHQKkJRoePq9p1fZQoaAZoCWgPQwjyzqEMVdEHwJSGlFKUaBVLMmgWR0CpCyM6q815dX2UKGgGaAloD0MI31LOF3sPA8CUhpRSlGgVSzJoFkdAqQrkuUUwjHV9lChoBmgJaA9DCFngK7r12vK/lIaUUpRoFUsyaBZHQKkKpUBnzxx1fZQoaAZoCWgPQwhD5V/LKwcVwJSGlFKUaBVLMmgWR0CpCma0QbuMdX2UKGgGaAloD0MIh/pd2Jrt+b+UhpRSlGgVSzJoFkdAqQyn4mCyyHV9lChoBmgJaA9DCAr19BH4A/m/lIaUUpRoFUsyaBZHQKkMakbgjyF1fZQoaAZoCWgPQwgiGt1B7Ezvv5SGlFKUaBVLMmgWR0CpDCul41P4dX2UKGgGaAloD0MIlzldFhMbBMCUhpRSlGgVSzJoFkdAqQvuHvc8DHV9lChoBmgJaA9DCENwXMZNrQXAlIaUUpRoFUsyaBZHQKkOckGA09B1fZQoaAZoCWgPQwhPPGcLCC3lv5SGlFKUaBVLMmgWR0CpDjRzq8lHdX2UKGgGaAloD0MINBE2PL2SAcCUhpRSlGgVSzJoFkdAqQ32LHdXT3V9lChoBmgJaA9DCP9YiA6BgwnAlIaUUpRoFUsyaBZHQKkNuIoE0SB1fZQoaAZoCWgPQwheZAJ+jaTuv5SGlFKUaBVLMmgWR0CpEEavA44qdX2UKGgGaAloD0MIwa27eaoDD8CUhpRSlGgVSzJoFkdAqRAJVIZqEnV9lChoBmgJaA9DCJShKqbSDwLAlIaUUpRoFUsyaBZHQKkPy0UoKD11fZQoaAZoCWgPQwhrgNJQo1Dyv5SGlFKUaBVLMmgWR0CpD43vH93sdX2UKGgGaAloD0MIErwhjQoc8b+UhpRSlGgVSzJoFkdAqRIz0g8r7XV9lChoBmgJaA9DCKK2DaMgWAvAlIaUUpRoFUsyaBZHQKkR9jlxOtZ1fZQoaAZoCWgPQwjeADPfwc/8v5SGlFKUaBVLMmgWR0CpEbgntv4udX2UKGgGaAloD0MI6PUn8bkT9L+UhpRSlGgVSzJoFkdAqRF6de6ZpnV9lChoBmgJaA9DCNhIEoQrIArAlIaUUpRoFUsyaBZHQKkULVnVXmx1fZQoaAZoCWgPQwj68gLso9P1v5SGlFKUaBVLMmgWR0CpE+/ffoA5dX2UKGgGaAloD0MIzQUujzWjFMCUhpRSlGgVSzJoFkdAqROxmyxA0XV9lChoBmgJaA9DCInUtItpRgzAlIaUUpRoFUsyaBZHQKkTdEy+HrR1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2c4ec488677f33a063b9af445cc27fa10a4adae9195e2907b6298a5229171b3
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:268e2bdd980199f5f1bf0c57ef2ab199949b981ad09b037d2f40fa7e7c93c6a9
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f365d667af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f365d663990>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677619331435589551, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnz7hPvNFALwbBg8/nz7hPvNFALwbBg8/nz7hPvNFALwbBg8/nz7hPvNFALwbBg8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkGK9vxodvz8Kb72+fwq1v8OKpb+TtJW/b7DWP2vKHz/cuyM/uiPLv6jGrr02c28+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyfPuE+80UAvBsGDz8FCmk8Vvx0umpDHjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4399309 -0.00782918 0.5586869 ]\n [ 0.4399309 -0.00782918 0.5586869 ]\n [ 0.4399309 -0.00782918 0.5586869 ]\n [ 0.4399309 -0.00782918 0.5586869 ]]", "desired_goal": "[[-1.4795704 1.4930756 -0.3699878 ]\n [-1.4143828 -1.2932972 -1.1695732 ]\n [ 1.6772593 0.6241824 0.63958526]\n [-1.5870278 -0.08533984 0.23383793]]", "observation": "[[ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]\n [ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]\n [ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]\n [ 0.4399309 -0.00782918 0.5586869 0.01422358 -0.00093455 0.00965963]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQ6JfvBsGFT6dFqQ9bQO2vaRl6zzR7wU+CeYAvgcrs70YnLc9hD/vPYNkwb3ESDg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01364953 0.1455311 0.08012126]\n [-0.08887372 0.02873499 0.13079764]\n [-0.12587751 -0.08748441 0.08965319]\n [ 0.11682037 -0.09442999 0.17996508]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVft0PGag5r+UhpRSlIwBbJRLMowBdJRHQKj1f7Z39rJ1fZQoaAZoCWgPQwhxHHi13DkAwJSGlFKUaBVLMmgWR0Co9UInBtUGdX2UKGgGaAloD0MII/Qz9bolCMCUhpRSlGgVSzJoFkdAqPUD/4qPO3V9lChoBmgJaA9DCOigSzj01vC/lIaUUpRoFUsyaBZHQKj0xi9Zid91fZQoaAZoCWgPQwhPzHoxlNMVwJSGlFKUaBVLMmgWR0Co93P1L8JldX2UKGgGaAloD0MICfmgZ7Oq9L+UhpRSlGgVSzJoFkdAqPc2sLfDUHV9lChoBmgJaA9DCAbYR6euPAzAlIaUUpRoFUsyaBZHQKj2+HwgDA91fZQoaAZoCWgPQwjfGAKAY28FwJSGlFKUaBVLMmgWR0Co9rsmnfl7dX2UKGgGaAloD0MIwLD8+bag+r+UhpRSlGgVSzJoFkdAqPigFTvRZ3V9lChoBmgJaA9DCDqxh/axwhPAlIaUUpRoFUsyaBZHQKj4YZ7Xxvx1fZQoaAZoCWgPQwiBsilXeJcGwJSGlFKUaBVLMmgWR0Co+CJxFRYSdX2UKGgGaAloD0MIfcwHBDpT9L+UhpRSlGgVSzJoFkdAqPfkHObAlHV9lChoBmgJaA9DCJRNucK7vATAlIaUUpRoFUsyaBZHQKj5rhJiAlR1fZQoaAZoCWgPQwjyzqEMVWETwJSGlFKUaBVLMmgWR0Co+W+Myad+dX2UKGgGaAloD0MItwpioGuf9L+UhpRSlGgVSzJoFkdAqPkwKBun/HV9lChoBmgJaA9DCOhn6nWLoAXAlIaUUpRoFUsyaBZHQKj48cVgx8F1fZQoaAZoCWgPQwiGAODYsyf8v5SGlFKUaBVLMmgWR0Co+tNK7I1cdX2UKGgGaAloD0MIWI/7VutE8b+UhpRSlGgVSzJoFkdAqPqUupS75HV9lChoBmgJaA9DCPUwtDo5gwnAlIaUUpRoFUsyaBZHQKj6VY+0PYp1fZQoaAZoCWgPQwgoui784FwAwJSGlFKUaBVLMmgWR0Co+hcrAgxKdX2UKGgGaAloD0MIpmH4iJgyA8CUhpRSlGgVSzJoFkdAqPvw4GUwBnV9lChoBmgJaA9DCMrhk04kmADAlIaUUpRoFUsyaBZHQKj7soTfzjF1fZQoaAZoCWgPQwidEhCTcKHzv5SGlFKUaBVLMmgWR0Co+3Nnf2sadX2UKGgGaAloD0MIVoFaDB6GAcCUhpRSlGgVSzJoFkdAqPs1JOFg2XV9lChoBmgJaA9DCIe/JmvUw/6/lIaUUpRoFUsyaBZHQKj9DE4Nqg11fZQoaAZoCWgPQwgp6sw9JHz0v5SGlFKUaBVLMmgWR0Co/M26kIomdX2UKGgGaAloD0MIqIqp9BP+EMCUhpRSlGgVSzJoFkdAqPyOcUdq+XV9lChoBmgJaA9DCLiwbrw7Mv+/lIaUUpRoFUsyaBZHQKj8T+4smOV1fZQoaAZoCWgPQwiNJEG4Aor4v5SGlFKUaBVLMmgWR0Co/hnDR+jNdX2UKGgGaAloD0MI+n3/5sXJBsCUhpRSlGgVSzJoFkdAqP3bA57w8XV9lChoBmgJaA9DCIffTbfs0ADAlIaUUpRoFUsyaBZHQKj9m5lvqC91fZQoaAZoCWgPQwikHMwmwBAHwJSGlFKUaBVLMmgWR0Co/Vz8P4EfdX2UKGgGaAloD0MI9Q63Q8Mi8b+UhpRSlGgVSzJoFkdAqP8wy2x6fXV9lChoBmgJaA9DCIfddwyP/QfAlIaUUpRoFUsyaBZHQKj+8lXRw611fZQoaAZoCWgPQwgX8DLDRhn5v5SGlFKUaBVLMmgWR0Co/rMS00FbdX2UKGgGaAloD0MI2nIuxVWl+L+UhpRSlGgVSzJoFkdAqP50dvKlpHV9lChoBmgJaA9DCPzjvWplwgfAlIaUUpRoFUsyaBZHQKkAP0cOskp1fZQoaAZoCWgPQwjPZWoSvKEGwJSGlFKUaBVLMmgWR0CpAAC/fwZwdX2UKGgGaAloD0MINzXQfM4dA8CUhpRSlGgVSzJoFkdAqP/BjhDPW3V9lChoBmgJaA9DCFLwFHKlHgfAlIaUUpRoFUsyaBZHQKj/gzHjp9t1fZQoaAZoCWgPQwhuhhvw+aH6v5SGlFKUaBVLMmgWR0CpAWP/io87dX2UKGgGaAloD0MIBDi9i/dDAsCUhpRSlGgVSzJoFkdAqQElrM1TBXV9lChoBmgJaA9DCPfmN0w0aAPAlIaUUpRoFUsyaBZHQKkA5ooNNJx1fZQoaAZoCWgPQwhVh9wMN0ALwJSGlFKUaBVLMmgWR0CpAKgbADaHdX2UKGgGaAloD0MIOey+Y3gMCsCUhpRSlGgVSzJoFkdAqQJ9l9SdfHV9lChoBmgJaA9DCDZbecn/ZP+/lIaUUpRoFUsyaBZHQKkCP0JWvKV1fZQoaAZoCWgPQwj8NO7Nb3gMwJSGlFKUaBVLMmgWR0CpAgAWac7RdX2UKGgGaAloD0MIYwtBDko4B8CUhpRSlGgVSzJoFkdAqQHBgJC0GHV9lChoBmgJaA9DCGDpfHiWQBHAlIaUUpRoFUsyaBZHQKkDmgf2bod1fZQoaAZoCWgPQwiMu0G0VvT7v5SGlFKUaBVLMmgWR0CpA1tjkMkQdX2UKGgGaAloD0MI/YaJBik4CMCUhpRSlGgVSzJoFkdAqQMcMCtA9nV9lChoBmgJaA9DCD6Skh6GtgnAlIaUUpRoFUsyaBZHQKkC3ch1Tzd1fZQoaAZoCWgPQwj2Yb1RKwz8v5SGlFKUaBVLMmgWR0CpBKstsenydX2UKGgGaAloD0MI4ExMF2K1+L+UhpRSlGgVSzJoFkdAqQRtA3T/hnV9lChoBmgJaA9DCLXf2omSsAPAlIaUUpRoFUsyaBZHQKkELd56dDp1fZQoaAZoCWgPQwhWR450Bob1v5SGlFKUaBVLMmgWR0CpA+9Nvfj0dX2UKGgGaAloD0MInyKHiJvTDcCUhpRSlGgVSzJoFkdAqQWrHOryUnV9lChoBmgJaA9DCCcUIuAQChDAlIaUUpRoFUsyaBZHQKkFbHKfWc11fZQoaAZoCWgPQwjt9e6P9woPwJSGlFKUaBVLMmgWR0CpBS1FhG6PdX2UKGgGaAloD0MIvhQeNLuOAMCUhpRSlGgVSzJoFkdAqQTu1OTJQ3V9lChoBmgJaA9DCNsy4CwlC/W/lIaUUpRoFUsyaBZHQKkGxvVmSQp1fZQoaAZoCWgPQwgG9MKdC2P/v5SGlFKUaBVLMmgWR0CpBoiT+vQodX2UKGgGaAloD0MIgbT/AdaqB8CUhpRSlGgVSzJoFkdAqQZJaTwDvHV9lChoBmgJaA9DCGsNpfYiWhDAlIaUUpRoFUsyaBZHQKkGCtozvZ11fZQoaAZoCWgPQwih2AqalggQwJSGlFKUaBVLMmgWR0CpB9utW+49dX2UKGgGaAloD0MI9wKzQpFOBMCUhpRSlGgVSzJoFkdAqQedEVnEl3V9lChoBmgJaA9DCLPROT/Fsfy/lIaUUpRoFUsyaBZHQKkHXabnX/Z1fZQoaAZoCWgPQwhNgjekUWESwJSGlFKUaBVLMmgWR0CpBx8qnWJ8dX2UKGgGaAloD0MIBwd7E0PyB8CUhpRSlGgVSzJoFkdAqQjqWRigCnV9lChoBmgJaA9DCE33OqkvSwXAlIaUUpRoFUsyaBZHQKkIq+j/Mnt1fZQoaAZoCWgPQwj3zJIANRUCwJSGlFKUaBVLMmgWR0CpCGyhi9ZidX2UKGgGaAloD0MIQkKUL2jBCMCUhpRSlGgVSzJoFkdAqQguEoOQQ3V9lChoBmgJaA9DCMpuZvSjwQbAlIaUUpRoFUsyaBZHQKkKApG4I8h1fZQoaAZoCWgPQwjzPo7myAryv5SGlFKUaBVLMmgWR0CpCcQQL/jsdX2UKGgGaAloD0MIafzCK0leCcCUhpRSlGgVSzJoFkdAqQmE+/xlQXV9lChoBmgJaA9DCAltOZfi6gnAlIaUUpRoFUsyaBZHQKkJRoePq9p1fZQoaAZoCWgPQwjyzqEMVdEHwJSGlFKUaBVLMmgWR0CpCyM6q815dX2UKGgGaAloD0MI31LOF3sPA8CUhpRSlGgVSzJoFkdAqQrkuUUwjHV9lChoBmgJaA9DCFngK7r12vK/lIaUUpRoFUsyaBZHQKkKpUBnzxx1fZQoaAZoCWgPQwhD5V/LKwcVwJSGlFKUaBVLMmgWR0CpCma0QbuMdX2UKGgGaAloD0MIh/pd2Jrt+b+UhpRSlGgVSzJoFkdAqQyn4mCyyHV9lChoBmgJaA9DCAr19BH4A/m/lIaUUpRoFUsyaBZHQKkMakbgjyF1fZQoaAZoCWgPQwgiGt1B7Ezvv5SGlFKUaBVLMmgWR0CpDCul41P4dX2UKGgGaAloD0MIlzldFhMbBMCUhpRSlGgVSzJoFkdAqQvuHvc8DHV9lChoBmgJaA9DCENwXMZNrQXAlIaUUpRoFUsyaBZHQKkOckGA09B1fZQoaAZoCWgPQwhPPGcLCC3lv5SGlFKUaBVLMmgWR0CpDjRzq8lHdX2UKGgGaAloD0MINBE2PL2SAcCUhpRSlGgVSzJoFkdAqQ32LHdXT3V9lChoBmgJaA9DCP9YiA6BgwnAlIaUUpRoFUsyaBZHQKkNuIoE0SB1fZQoaAZoCWgPQwheZAJ+jaTuv5SGlFKUaBVLMmgWR0CpEEavA44qdX2UKGgGaAloD0MIwa27eaoDD8CUhpRSlGgVSzJoFkdAqRAJVIZqEnV9lChoBmgJaA9DCJShKqbSDwLAlIaUUpRoFUsyaBZHQKkPy0UoKD11fZQoaAZoCWgPQwhrgNJQo1Dyv5SGlFKUaBVLMmgWR0CpD43vH93sdX2UKGgGaAloD0MIErwhjQoc8b+UhpRSlGgVSzJoFkdAqRIz0g8r7XV9lChoBmgJaA9DCKK2DaMgWAvAlIaUUpRoFUsyaBZHQKkR9jlxOtZ1fZQoaAZoCWgPQwjeADPfwc/8v5SGlFKUaBVLMmgWR0CpEbgntv4udX2UKGgGaAloD0MI6PUn8bkT9L+UhpRSlGgVSzJoFkdAqRF6de6ZpnV9lChoBmgJaA9DCNhIEoQrIArAlIaUUpRoFUsyaBZHQKkULVnVXmx1fZQoaAZoCWgPQwj68gLso9P1v5SGlFKUaBVLMmgWR0CpE+/ffoA5dX2UKGgGaAloD0MIzQUujzWjFMCUhpRSlGgVSzJoFkdAqROxmyxA0XV9lChoBmgJaA9DCInUtItpRgzAlIaUUpRoFUsyaBZHQKkTdEy+HrR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (467 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.448310973122716, "std_reward": 1.069363103221883, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T22:15:45.402679"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6fdf034dd4cec3533def20184b312a1e5cd8658a12c4d94fc2dc6f49c6ab592
3
+ size 3056