--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: whisper-tiny-finetune-hindi-fleurs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: hi_in split: train+test args: hi_in metrics: - name: Wer type: wer value: 0.42621638924455824 --- # whisper-tiny-finetune-hindi-fleurs This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.8315 - Wer Ortho: 0.4313 - Wer: 0.4262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.8112 | 1.39 | 100 | 1.7274 | 0.6323 | 0.6258 | | 1.0387 | 2.78 | 200 | 1.1194 | 0.5130 | 0.5072 | | 0.7671 | 4.17 | 300 | 0.9671 | 0.4665 | 0.4613 | | 0.5283 | 5.56 | 400 | 0.8840 | 0.4494 | 0.4440 | | 0.4458 | 6.94 | 500 | 0.8315 | 0.4313 | 0.4262 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0