File size: 1,127 Bytes
ba5bd35
 
1c8b931
e28813b
3e5d016
 
 
 
e28813b
 
 
 
b669fd0
 
9c59ad2
6ec6000
2dece0b
 
 
 
 
b669fd0
2dece0b
3ecc7de
2dece0b
 
b669fd0
cca530b
 
 
3ecc7de
 
 
 
2dece0b
b669fd0
 
 
 
f2785e9
b669fd0
2dece0b
b669fd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
license: llama2
base_model: beomi/llama-2-ko-7b
inference: false
datasets:
- Ash-Hun/Welfare-QA
library_name: peft
pipeline_tag: text-generation
tags:
- torch
- llama2
- domain-specific-lm
---

<div align='center'>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6370a4e53d1bd47a4ebc2120/TQSWE0e3dAO_Ksbb8b5Xd.png" width='45%'/>
  <h1>"WelSSiSKo : Welfare Domain Specific Model"</h1>
</div>

---  


# Github â–¼
  > If you want to get how to use this model, please check my github repository :)  
👉 [Github Repo](https://github.com/ash-hun/WelSSISKo)


[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ash-hun/WelSSISKo/blob/main/WelSSiSKo_Inference.ipynb)


# What is BaseModel â–¼
> 👉 [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b)


# Training procedure â–¼
The following `bitsandbytes` quantization config was used during training:
- **load_in_4bit**: True
- **bnb_4bit_quant_type**: nf4
- **bnb_4bit_use_double_quant**: False
- **bnb_4bit_compute_dtype**: float16
  
# Framework versions â–¼
- PEFT 0.8.2.