File size: 1,127 Bytes
ba5bd35 1c8b931 e28813b 3e5d016 e28813b b669fd0 9c59ad2 6ec6000 2dece0b b669fd0 2dece0b 3ecc7de 2dece0b b669fd0 cca530b 3ecc7de 2dece0b b669fd0 f2785e9 b669fd0 2dece0b b669fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
license: llama2
base_model: beomi/llama-2-ko-7b
inference: false
datasets:
- Ash-Hun/Welfare-QA
library_name: peft
pipeline_tag: text-generation
tags:
- torch
- llama2
- domain-specific-lm
---
<div align='center'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6370a4e53d1bd47a4ebc2120/TQSWE0e3dAO_Ksbb8b5Xd.png" width='45%'/>
<h1>"WelSSiSKo : Welfare Domain Specific Model"</h1>
</div>
---
# Github â–¼
> If you want to get how to use this model, please check my github repository :)
👉 [Github Repo](https://github.com/ash-hun/WelSSISKo)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ash-hun/WelSSISKo/blob/main/WelSSiSKo_Inference.ipynb)
# What is BaseModel â–¼
> 👉 [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b)
# Training procedure â–¼
The following `bitsandbytes` quantization config was used during training:
- **load_in_4bit**: True
- **bnb_4bit_quant_type**: nf4
- **bnb_4bit_use_double_quant**: False
- **bnb_4bit_compute_dtype**: float16
# Framework versions â–¼
- PEFT 0.8.2. |