Ashraf-kasem
commited on
Commit
•
1932fe3
1
Parent(s):
398bc03
Initial commit
Browse files- README.md +37 -0
- a2c_robot_arm.zip +3 -0
- a2c_robot_arm/_stable_baselines3_version +1 -0
- a2c_robot_arm/data +97 -0
- a2c_robot_arm/policy.optimizer.pth +3 -0
- a2c_robot_arm/policy.pth +3 -0
- a2c_robot_arm/pytorch_variables.pth +3 -0
- a2c_robot_arm/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.26 +/- 0.13
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c_robot_arm.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13aafb051d73238136a361fce11b3daecf43c41eddf4d8b7b074473374bf6692
|
3 |
+
size 106829
|
a2c_robot_arm/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c_robot_arm/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e6e40813010>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e6e4080ae00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 500000,
|
23 |
+
"_total_timesteps": 500000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691494772840529690,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAv3xGPsE1ADuBFts+v3xGPsE1ADuBFts+RV7uvWE6sb4L6Ae+gyACv35Jqj6wh60+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAv9X3PsKHg78p0Ck/2pekP1TEq77tbqu/zKrDv8SOi795aPg8mqY3vuxfjj85dRE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/fEY+wTUAO4EW2z4ybtw+WgKju8Tutz6/fEY+wTUAO4EW2z4ybtw+WgKju8Tutz5FXu69YTqxvgvoB77ndee/h1PZvypGsb+DIAK/fkmqPrCHrT5VKkm/JBjUPwKpWT+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.19383524 0.00195633 0.42790607]\n [ 0.19383524 0.00195633 0.42790607]\n [-0.11639074 -0.34614852 -0.13272111]\n [-0.5083086 0.33259195 0.33892584]]",
|
34 |
+
"desired_goal": "[[ 0.48405263 -1.0275805 0.6633325 ]\n [ 1.2858841 -0.33548224 -1.3393227 ]\n [-1.5286498 -1.0902944 0.03032325]\n [-0.17934647 1.1123023 0.5681949 ]]",
|
35 |
+
"observation": "[[ 0.19383524 0.00195633 0.42790607 0.43052822 -0.00497465 0.3592435 ]\n [ 0.19383524 0.00195633 0.42790607 0.43052822 -0.00497465 0.3592435 ]\n [-0.11639074 -0.34614852 -0.13272111 -1.8082856 -1.6978616 -1.3849537 ]\n [-0.5083086 0.33259195 0.33892584 -0.7858022 1.6569867 0.8502351 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALjZHvQ+uiTzV5RA8vs4Avn6i2zyVNws99/1dvX2Nrb05t5o8xd/KvWPBwD3y+Xc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.04863565 0.01680663 0.00884386]\n [-0.12578866 0.02681088 0.03398855]\n [-0.05419728 -0.08474252 0.0188862 ]\n [-0.09905962 0.09411886 0.2421644 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8KlSCOFQEaMAWyUSwKMAXSUR0CYwIWV/tpmdX2UKGgGR7+xFocrAgxKaAdLAmgIR0CYwQ1+RYA9dX2UKGgGR7/R+YtxuKoAaAdLA2gIR0CYwBj9n9NvdX2UKGgGR7/JtpmEoOQRaAdLA2gIR0CYv5y2x6fKdX2UKGgGR7/TkRBeHBUJaAdLA2gIR0CYwKNZ/0/XdX2UKGgGR7/Qyhi9Zid8aAdLA2gIR0CYwSqsU7CBdX2UKGgGR7+zm/336AOKaAdLAmgIR0CYwLPPszEadX2UKGgGR7/UO1v2oNutaAdLA2gIR0CYwDc6vJRwdX2UKGgGR7/GGFi8WbgCaAdLA2gIR0CYv7rxy4nXdX2UKGgGR7/QmZE2Hck/aAdLA2gIR0CYwUO8TSLJdX2UKGgGR7/B5gPVd5Y6aAdLAmgIR0CYwEfOD8LsdX2UKGgGR7+4gIQe3hGZaAdLAmgIR0CYv8uCwr1/dX2UKGgGR7/etK7I1cdHaAdLBGgIR0CYwNnCwbEQdX2UKGgGR7/AkM1CPZIyaAdLAmgIR0CYv+BE8aGYdX2UKGgGR7/QcnmaH9FXaAdLA2gIR0CYwWG/vfCRdX2UKGgGR7/VPdl/YrauaAdLBGgIR0CYwG3BYV7AdX2UKGgGR7/PWdVea8YiaAdLA2gIR0CYwPP7el9CdX2UKGgGR7/RH5Jsfq5caAdLA2gIR0CYv/rnkkrxdX2UKGgGR7/K/3WWhRIjaAdLA2gIR0CYwYENe+mFdX2UKGgGR7/R5Lh73PAwaAdLA2gIR0CYwI+5e7cxdX2UKGgGR7/MoVmBe5WjaAdLA2gIR0CYwZzMA3kxdX2UKGgGR7/CzguRLbpNaAdLAmgIR0CYwKEidJ8OdX2UKGgGR7/UnogV45cUaAdLBGgIR0CYwCTo+wC9dX2UKGgGR7+op8WsRxtIaAdLAWgIR0CYwaZvUBn0dX2UKGgGR7/RHN5dGAkLaAdLBWgIR0CYwSfUnXumdX2UKGgGR7+XTZxrBTGYaAdLAWgIR0CYwKsOG0u2dX2UKGgGR7/B74SHuZ1FaAdLAmgIR0CYwDw1zhgmdX2UKGgGR7/OQsf7rLQpaAdLA2gIR0CYwUYDklu4dX2UKGgGR7/Oht+CsfaIaAdLA2gIR0CYwMlenhsJdX2UKGgGR7/T+b3Gn4wiaAdLBGgIR0CYwc6DXe3ydX2UKGgGR7+kg2ZRbbDeaAdLAWgIR0CYwNJr+HafdX2UKGgGR7/QzMRpUPxyaAdLA2gIR0CYwFY0l7dBdX2UKGgGR7/MsyzollbvaAdLA2gIR0CYwWSxZ+x4dX2UKGgGR7+zdbgTAWSEaAdLAmgIR0CYwGxyn1nNdX2UKGgGR7/OfJV81Gb1aAdLA2gIR0CYwfAJ9iMHdX2UKGgGR7+j3yqdYnv2aAdLAWgIR0CYwXKKHfuUdX2UKGgGR7/IYO2AoXsPaAdLA2gIR0CYwPckdFOPdX2UKGgGR7+6WyC4BmwraAdLAmgIR0CYwIUrkKeDdX2UKGgGR7+/0oScslLOaAdLAmgIR0CYwgbMottidX2UKGgGR7/BTJhfBvaUaAdLAmgIR0CYwYfPX05EdX2UKGgGR7/MWkadc0LuaAdLA2gIR0CYwRTLGJemdX2UKGgGR7/YEt/WlMyraAdLA2gIR0CYwacQAdXDdX2UKGgGR7/WNNahYeT3aAdLBGgIR0CYwK3HaN+9dX2UKGgGR7/O4EwFkhA4aAdLA2gIR0CYwTRWcSXddX2UKGgGR7/hJZOi35N5aAdLBWgIR0CYwjlzU7SzdX2UKGgGR7+zMV1wHZ9NaAdLAmgIR0CYwMScbzbwdX2UKGgGR7/O5yU9pyp8aAdLA2gIR0CYwcdeY2KmdX2UKGgGR7/Q0CRwIdELaAdLA2gIR0CYwVdELH+7dX2UKGgGR7/RjTa0x/NJaAdLA2gIR0CYwlxEv0yydX2UKGgGR7/OK64Ds+mnaAdLA2gIR0CYwONKh+OPdX2UKGgGR7/Nx/d69kBkaAdLA2gIR0CYweXokiUxdX2UKGgGR7/Cnn+yZ8a5aAdLAmgIR0CYwm3Ehq0udX2UKGgGR7+5rtVrAP/aaAdLAmgIR0CYwPTHKfWddX2UKGgGR7/ViS7oSteVaAdLBGgIR0CYwXrc0tROdX2UKGgGR7/BVAiV0Lc9aAdLAmgIR0CYwoVbiZOSdX2UKGgGR7/J7JGOMl1KaAdLA2gIR0CYwgaWHDaXdX2UKGgGR7+/K2a2F36iaAdLAmgIR0CYwQ2NedCmdX2UKGgGR7+9ZpztCzC2aAdLAmgIR0CYwhevpyIYdX2UKGgGR7/TuKXOW0JGaAdLA2gIR0CYwZr8R+SbdX2UKGgGR7/cxwQ176YWaAdLBGgIR0CYwqdQfp2VdX2UKGgGR7+/v1DjR2KVaAdLAmgIR0CYwihtLteEdX2UKGgGR7/a1K5CngpCaAdLBGgIR0CYwS+kP+XJdX2UKGgGR7/NqpLmITGpaAdLA2gIR0CYwbnq3VkMdX2UKGgGR7+bCWNWEK3NaAdLAWgIR0CYwT2v0RODdX2UKGgGR7+xWyTpxFRYaAdLAmgIR0CYwj/wiJO4dX2UKGgGR7+jeIl+mWMTaAdLAWgIR0CYwUdZaFEidX2UKGgGR7/KrnTy8SPEaAdLA2gIR0CYwsjQzDXOdX2UKGgGR7/BNyo4uK4yaAdLAmgIR0CYwtig00m/dX2UKGgGR7/QDuBtk4FSaAdLA2gIR0CYwlm/WUbDdX2UKGgGR7/ZsVclgMMJaAdLBGgIR0CYwd0Sh8IBdX2UKGgGR7/JoL5RCQcQaAdLA2gIR0CYwWDqnm7rdX2UKGgGR7+/UlRgqmTDaAdLAmgIR0CYwu8UVSGbdX2UKGgGR7/AwN9YwIt2aAdLAmgIR0CYwnAgPmPpdX2UKGgGR7/Q7rLQokRjaAdLA2gIR0CYwfy2x6fKdX2UKGgGR7+YsunMt9QXaAdLAWgIR0CYwgVxS5y3dX2UKGgGR7/Uix3V09yMaAdLBGgIR0CYwYlA/s3RdX2UKGgGR7/NduYQarFPaAdLA2gIR0CYwowRoRI0dX2UKGgGR7/Qf2bobGWEaAdLBGgIR0CYwxn8baRIdX2UKGgGR7/Vo60Y0l7daAdLA2gIR0CYwal+Vkc0dX2UKGgGR7/VRSgoPTXraAdLBGgIR0CYwi6sQumKdX2UKGgGR7/Oso2GZeAvaAdLA2gIR0CYwzRfF72MdX2UKGgGR7/YN8ma6STyaAdLBGgIR0CYwrWGRFI/dX2UKGgGR7+/UQTVUdaMaAdLAmgIR0CYwkI6bONYdX2UKGgGR7/SXVsk6cRUaAdLA2gIR0CYwcaL4vexdX2UKGgGR7+6be/Ho5ggaAdLAmgIR0CYw03B55Z9dX2UKGgGR7+bW/ag2606aAdLAWgIR0CYw1Z+QU5/dX2UKGgGR7/IuUUwi7kGaAdLA2gIR0CYwteO4oZydX2UKGgGR7+VmOEM9bHIaAdLAWgIR0CYw1+2E0zkdX2UKGgGR7/UB9Tgl4TsaAdLA2gIR0CYwmNy5qdpdX2UKGgGR7/KeoUBXCCSaAdLA2gIR0CYwefF72L6dX2UKGgGR7/SZQpF1B+naAdLA2gIR0CYwvHd43WGdX2UKGgGR7+9/ustCiRGaAdLAmgIR0CYwnUzKs+3dX2UKGgGR7/Mu2Zy+6AfaAdLA2gIR0CYw37T2FnJdX2UKGgGR7/U0th/iHZcaAdLBGgIR0CYwg3mmtQsdX2UKGgGR7/DIlMRHww1aAdLAmgIR0CYw49Ba9sadX2UKGgGR7/Q2y9mHxjKaAdLA2gIR0CYwxAzYVZcdX2UKGgGR7/bMZgogFHKaAdLBGgIR0CYwpxQBPsSdX2UKGgGR7/AsuFpPAO8aAdLAmgIR0CYwiAHmig1dX2UKGgGR7+6A08/2TPjaAdLAmgIR0CYw6GjsUqQdX2UKGgGR7+8QDmr8zhxaAdLAmgIR0CYwyKYzBRAdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 25000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c_robot_arm/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bad5eeba48cf23dd587a845e457a31b2df0d9741c329e2e97c449fad7a1cb4a9
|
3 |
+
size 44734
|
a2c_robot_arm/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0026b7c6ed20707ce5ab66d77e6c810fb18a27e8195fef44d2a46b6b4ac750ca
|
3 |
+
size 46014
|
a2c_robot_arm/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c_robot_arm/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e6e40813010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e6e4080ae00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691494772840529690, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAv3xGPsE1ADuBFts+v3xGPsE1ADuBFts+RV7uvWE6sb4L6Ae+gyACv35Jqj6wh60+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAv9X3PsKHg78p0Ck/2pekP1TEq77tbqu/zKrDv8SOi795aPg8mqY3vuxfjj85dRE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/fEY+wTUAO4EW2z4ybtw+WgKju8Tutz6/fEY+wTUAO4EW2z4ybtw+WgKju8Tutz5FXu69YTqxvgvoB77ndee/h1PZvypGsb+DIAK/fkmqPrCHrT5VKkm/JBjUPwKpWT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.19383524 0.00195633 0.42790607]\n [ 0.19383524 0.00195633 0.42790607]\n [-0.11639074 -0.34614852 -0.13272111]\n [-0.5083086 0.33259195 0.33892584]]", "desired_goal": "[[ 0.48405263 -1.0275805 0.6633325 ]\n [ 1.2858841 -0.33548224 -1.3393227 ]\n [-1.5286498 -1.0902944 0.03032325]\n [-0.17934647 1.1123023 0.5681949 ]]", "observation": "[[ 0.19383524 0.00195633 0.42790607 0.43052822 -0.00497465 0.3592435 ]\n [ 0.19383524 0.00195633 0.42790607 0.43052822 -0.00497465 0.3592435 ]\n [-0.11639074 -0.34614852 -0.13272111 -1.8082856 -1.6978616 -1.3849537 ]\n [-0.5083086 0.33259195 0.33892584 -0.7858022 1.6569867 0.8502351 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALjZHvQ+uiTzV5RA8vs4Avn6i2zyVNws99/1dvX2Nrb05t5o8xd/KvWPBwD3y+Xc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04863565 0.01680663 0.00884386]\n [-0.12578866 0.02681088 0.03398855]\n [-0.05419728 -0.08474252 0.0188862 ]\n [-0.09905962 0.09411886 0.2421644 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8KlSCOFQEaMAWyUSwKMAXSUR0CYwIWV/tpmdX2UKGgGR7+xFocrAgxKaAdLAmgIR0CYwQ1+RYA9dX2UKGgGR7/R+YtxuKoAaAdLA2gIR0CYwBj9n9NvdX2UKGgGR7/JtpmEoOQRaAdLA2gIR0CYv5y2x6fKdX2UKGgGR7/TkRBeHBUJaAdLA2gIR0CYwKNZ/0/XdX2UKGgGR7/Qyhi9Zid8aAdLA2gIR0CYwSqsU7CBdX2UKGgGR7+zm/336AOKaAdLAmgIR0CYwLPPszEadX2UKGgGR7/UO1v2oNutaAdLA2gIR0CYwDc6vJRwdX2UKGgGR7/GGFi8WbgCaAdLA2gIR0CYv7rxy4nXdX2UKGgGR7/QmZE2Hck/aAdLA2gIR0CYwUO8TSLJdX2UKGgGR7/B5gPVd5Y6aAdLAmgIR0CYwEfOD8LsdX2UKGgGR7+4gIQe3hGZaAdLAmgIR0CYv8uCwr1/dX2UKGgGR7/etK7I1cdHaAdLBGgIR0CYwNnCwbEQdX2UKGgGR7/AkM1CPZIyaAdLAmgIR0CYv+BE8aGYdX2UKGgGR7/QcnmaH9FXaAdLA2gIR0CYwWG/vfCRdX2UKGgGR7/VPdl/YrauaAdLBGgIR0CYwG3BYV7AdX2UKGgGR7/PWdVea8YiaAdLA2gIR0CYwPP7el9CdX2UKGgGR7/RH5Jsfq5caAdLA2gIR0CYv/rnkkrxdX2UKGgGR7/K/3WWhRIjaAdLA2gIR0CYwYENe+mFdX2UKGgGR7/R5Lh73PAwaAdLA2gIR0CYwI+5e7cxdX2UKGgGR7/MoVmBe5WjaAdLA2gIR0CYwZzMA3kxdX2UKGgGR7/CzguRLbpNaAdLAmgIR0CYwKEidJ8OdX2UKGgGR7/UnogV45cUaAdLBGgIR0CYwCTo+wC9dX2UKGgGR7+op8WsRxtIaAdLAWgIR0CYwaZvUBn0dX2UKGgGR7/RHN5dGAkLaAdLBWgIR0CYwSfUnXumdX2UKGgGR7+XTZxrBTGYaAdLAWgIR0CYwKsOG0u2dX2UKGgGR7/B74SHuZ1FaAdLAmgIR0CYwDw1zhgmdX2UKGgGR7/OQsf7rLQpaAdLA2gIR0CYwUYDklu4dX2UKGgGR7/Oht+CsfaIaAdLA2gIR0CYwMlenhsJdX2UKGgGR7/T+b3Gn4wiaAdLBGgIR0CYwc6DXe3ydX2UKGgGR7+kg2ZRbbDeaAdLAWgIR0CYwNJr+HafdX2UKGgGR7/QzMRpUPxyaAdLA2gIR0CYwFY0l7dBdX2UKGgGR7/MsyzollbvaAdLA2gIR0CYwWSxZ+x4dX2UKGgGR7+zdbgTAWSEaAdLAmgIR0CYwGxyn1nNdX2UKGgGR7/OfJV81Gb1aAdLA2gIR0CYwfAJ9iMHdX2UKGgGR7+j3yqdYnv2aAdLAWgIR0CYwXKKHfuUdX2UKGgGR7/IYO2AoXsPaAdLA2gIR0CYwPckdFOPdX2UKGgGR7+6WyC4BmwraAdLAmgIR0CYwIUrkKeDdX2UKGgGR7+/0oScslLOaAdLAmgIR0CYwgbMottidX2UKGgGR7/BTJhfBvaUaAdLAmgIR0CYwYfPX05EdX2UKGgGR7/MWkadc0LuaAdLA2gIR0CYwRTLGJemdX2UKGgGR7/YEt/WlMyraAdLA2gIR0CYwacQAdXDdX2UKGgGR7/WNNahYeT3aAdLBGgIR0CYwK3HaN+9dX2UKGgGR7/O4EwFkhA4aAdLA2gIR0CYwTRWcSXddX2UKGgGR7/hJZOi35N5aAdLBWgIR0CYwjlzU7SzdX2UKGgGR7+zMV1wHZ9NaAdLAmgIR0CYwMScbzbwdX2UKGgGR7/O5yU9pyp8aAdLA2gIR0CYwcdeY2KmdX2UKGgGR7/Q0CRwIdELaAdLA2gIR0CYwVdELH+7dX2UKGgGR7/RjTa0x/NJaAdLA2gIR0CYwlxEv0yydX2UKGgGR7/OK64Ds+mnaAdLA2gIR0CYwONKh+OPdX2UKGgGR7/Nx/d69kBkaAdLA2gIR0CYweXokiUxdX2UKGgGR7/Cnn+yZ8a5aAdLAmgIR0CYwm3Ehq0udX2UKGgGR7+5rtVrAP/aaAdLAmgIR0CYwPTHKfWddX2UKGgGR7/ViS7oSteVaAdLBGgIR0CYwXrc0tROdX2UKGgGR7/BVAiV0Lc9aAdLAmgIR0CYwoVbiZOSdX2UKGgGR7/J7JGOMl1KaAdLA2gIR0CYwgaWHDaXdX2UKGgGR7+/K2a2F36iaAdLAmgIR0CYwQ2NedCmdX2UKGgGR7+9ZpztCzC2aAdLAmgIR0CYwhevpyIYdX2UKGgGR7/TuKXOW0JGaAdLA2gIR0CYwZr8R+SbdX2UKGgGR7/cxwQ176YWaAdLBGgIR0CYwqdQfp2VdX2UKGgGR7+/v1DjR2KVaAdLAmgIR0CYwihtLteEdX2UKGgGR7/a1K5CngpCaAdLBGgIR0CYwS+kP+XJdX2UKGgGR7/NqpLmITGpaAdLA2gIR0CYwbnq3VkMdX2UKGgGR7+bCWNWEK3NaAdLAWgIR0CYwT2v0RODdX2UKGgGR7+xWyTpxFRYaAdLAmgIR0CYwj/wiJO4dX2UKGgGR7+jeIl+mWMTaAdLAWgIR0CYwUdZaFEidX2UKGgGR7/KrnTy8SPEaAdLA2gIR0CYwsjQzDXOdX2UKGgGR7/BNyo4uK4yaAdLAmgIR0CYwtig00m/dX2UKGgGR7/QDuBtk4FSaAdLA2gIR0CYwlm/WUbDdX2UKGgGR7/ZsVclgMMJaAdLBGgIR0CYwd0Sh8IBdX2UKGgGR7/JoL5RCQcQaAdLA2gIR0CYwWDqnm7rdX2UKGgGR7+/UlRgqmTDaAdLAmgIR0CYwu8UVSGbdX2UKGgGR7/AwN9YwIt2aAdLAmgIR0CYwnAgPmPpdX2UKGgGR7/Q7rLQokRjaAdLA2gIR0CYwfy2x6fKdX2UKGgGR7+YsunMt9QXaAdLAWgIR0CYwgVxS5y3dX2UKGgGR7/Uix3V09yMaAdLBGgIR0CYwYlA/s3RdX2UKGgGR7/NduYQarFPaAdLA2gIR0CYwowRoRI0dX2UKGgGR7/Qf2bobGWEaAdLBGgIR0CYwxn8baRIdX2UKGgGR7/Vo60Y0l7daAdLA2gIR0CYwal+Vkc0dX2UKGgGR7/VRSgoPTXraAdLBGgIR0CYwi6sQumKdX2UKGgGR7/Oso2GZeAvaAdLA2gIR0CYwzRfF72MdX2UKGgGR7/YN8ma6STyaAdLBGgIR0CYwrWGRFI/dX2UKGgGR7+/UQTVUdaMaAdLAmgIR0CYwkI6bONYdX2UKGgGR7/SXVsk6cRUaAdLA2gIR0CYwcaL4vexdX2UKGgGR7+6be/Ho5ggaAdLAmgIR0CYw03B55Z9dX2UKGgGR7+bW/ag2606aAdLAWgIR0CYw1Z+QU5/dX2UKGgGR7/IuUUwi7kGaAdLA2gIR0CYwteO4oZydX2UKGgGR7+VmOEM9bHIaAdLAWgIR0CYw1+2E0zkdX2UKGgGR7/UB9Tgl4TsaAdLA2gIR0CYwmNy5qdpdX2UKGgGR7/KeoUBXCCSaAdLA2gIR0CYwefF72L6dX2UKGgGR7/SZQpF1B+naAdLA2gIR0CYwvHd43WGdX2UKGgGR7+9/ustCiRGaAdLAmgIR0CYwnUzKs+3dX2UKGgGR7/Mu2Zy+6AfaAdLA2gIR0CYw37T2FnJdX2UKGgGR7/U0th/iHZcaAdLBGgIR0CYwg3mmtQsdX2UKGgGR7/DIlMRHww1aAdLAmgIR0CYw49Ba9sadX2UKGgGR7/Q2y9mHxjKaAdLA2gIR0CYwxAzYVZcdX2UKGgGR7/bMZgogFHKaAdLBGgIR0CYwpxQBPsSdX2UKGgGR7/AsuFpPAO8aAdLAmgIR0CYwiAHmig1dX2UKGgGR7+6A08/2TPjaAdLAmgIR0CYw6GjsUqQdX2UKGgGR7+8QDmr8zhxaAdLAmgIR0CYwyKYzBRAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (661 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2586860232055187, "std_reward": 0.13351411531228163, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-08T12:06:21.996641"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af360c2938bb677fbdfae514891dd1adcb5335fee3ed6dbb5d7f14d46c595ef4
|
3 |
+
size 2623
|