File size: 31,585 Bytes
f2b239d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 |
from __future__ import annotations
import os
import platform
import re
import sys
import traceback
from contextlib import contextmanager, suppress
from copy import copy
from functools import partial
from pathlib import Path
from textwrap import dedent
from typing import TYPE_CHECKING, Any, NamedTuple
import gradio as gr
import torch
from PIL import Image
from rich import print
from torchvision.transforms.functional import to_pil_image
import modules
from adetailer import (
AFTER_DETAILER,
__version__,
get_models,
mediapipe_predict,
ultralytics_predict,
)
from adetailer.args import ALL_ARGS, BBOX_SORTBY, ADetailerArgs, SkipImg2ImgOrig
from adetailer.common import PredictOutput
from adetailer.mask import (
filter_by_ratio,
filter_k_largest,
mask_preprocess,
sort_bboxes,
)
from adetailer.traceback import rich_traceback
from adetailer.ui import WebuiInfo, adui, ordinal, suffix
from controlnet_ext import ControlNetExt, controlnet_exists, get_cn_models
from controlnet_ext.restore import (
CNHijackRestore,
cn_allow_script_control,
)
from modules import images, paths, safe, script_callbacks, scripts, shared
from modules.devices import NansException
from modules.processing import (
Processed,
StableDiffusionProcessingImg2Img,
create_infotext,
process_images,
)
from modules.sd_samplers import all_samplers
from modules.shared import cmd_opts, opts, state
if TYPE_CHECKING:
from fastapi import FastAPI
no_huggingface = getattr(cmd_opts, "ad_no_huggingface", False)
adetailer_dir = Path(paths.models_path, "adetailer")
extra_models_dir = shared.opts.data.get("ad_extra_models_dir", "")
model_mapping = get_models(
adetailer_dir, extra_dir=extra_models_dir, huggingface=not no_huggingface
)
txt2img_submit_button = img2img_submit_button = None
SCRIPT_DEFAULT = "dynamic_prompting,dynamic_thresholding,wildcard_recursive,wildcards,lora_block_weight,negpip"
if (
not adetailer_dir.exists()
and adetailer_dir.parent.exists()
and os.access(adetailer_dir.parent, os.W_OK)
):
adetailer_dir.mkdir()
print(
f"[-] ADetailer initialized. version: {__version__}, num models: {len(model_mapping)}"
)
@contextmanager
def change_torch_load():
orig = torch.load
try:
torch.load = safe.unsafe_torch_load
yield
finally:
torch.load = orig
@contextmanager
def pause_total_tqdm():
orig = opts.data.get("multiple_tqdm", True)
try:
opts.data["multiple_tqdm"] = False
yield
finally:
opts.data["multiple_tqdm"] = orig
@contextmanager
def preseve_prompts(p):
all_pt = copy(p.all_prompts)
all_ng = copy(p.all_negative_prompts)
try:
yield
finally:
p.all_prompts = all_pt
p.all_negative_prompts = all_ng
class AfterDetailerScript(scripts.Script):
def __init__(self):
super().__init__()
self.ultralytics_device = self.get_ultralytics_device()
self.controlnet_ext = None
def __repr__(self):
return f"{self.__class__.__name__}(version={__version__})"
def title(self):
return AFTER_DETAILER
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
num_models = opts.data.get("ad_max_models", 2)
ad_model_list = list(model_mapping.keys())
sampler_names = [sampler.name for sampler in all_samplers]
try:
checkpoint_list = modules.sd_models.checkpoint_tiles(use_shorts=True)
except TypeError:
checkpoint_list = modules.sd_models.checkpoint_tiles()
vae_list = modules.shared_items.sd_vae_items()
webui_info = WebuiInfo(
ad_model_list=ad_model_list,
sampler_names=sampler_names,
t2i_button=txt2img_submit_button,
i2i_button=img2img_submit_button,
checkpoints_list=checkpoint_list,
vae_list=vae_list,
)
components, infotext_fields = adui(num_models, is_img2img, webui_info)
self.infotext_fields = infotext_fields
return components
def init_controlnet_ext(self) -> None:
if self.controlnet_ext is not None:
return
self.controlnet_ext = ControlNetExt()
if controlnet_exists:
try:
self.controlnet_ext.init_controlnet()
except ImportError:
error = traceback.format_exc()
print(
f"[-] ADetailer: ControlNetExt init failed:\n{error}",
file=sys.stderr,
)
def update_controlnet_args(self, p, args: ADetailerArgs) -> None:
if self.controlnet_ext is None:
self.init_controlnet_ext()
if (
self.controlnet_ext is not None
and self.controlnet_ext.cn_available
and args.ad_controlnet_model != "None"
):
self.controlnet_ext.update_scripts_args(
p,
model=args.ad_controlnet_model,
module=args.ad_controlnet_module,
weight=args.ad_controlnet_weight,
guidance_start=args.ad_controlnet_guidance_start,
guidance_end=args.ad_controlnet_guidance_end,
)
def is_ad_enabled(self, *args_) -> bool:
arg_list = [arg for arg in args_ if isinstance(arg, dict)]
if not args_ or not arg_list:
message = f"""
[-] ADetailer: Invalid arguments passed to ADetailer.
input: {args_!r}
ADetailer disabled.
"""
print(dedent(message), file=sys.stderr)
return False
ad_enabled = args_[0] if isinstance(args_[0], bool) else True
not_none = any(arg.get("ad_model", "None") != "None" for arg in arg_list)
return ad_enabled and not_none
def check_skip_img2img(self, p, *args_) -> None:
if (
hasattr(p, "_ad_skip_img2img")
or not hasattr(p, "init_images")
or not p.init_images
):
return
if len(args_) >= 2 and isinstance(args_[1], bool):
p._ad_skip_img2img = args_[1]
if args_[1]:
p._ad_orig = SkipImg2ImgOrig(
steps=p.steps,
sampler_name=p.sampler_name,
width=p.width,
height=p.height,
)
p.steps = 1
p.sampler_name = "Euler"
p.width = 128
p.height = 128
else:
p._ad_skip_img2img = False
@staticmethod
def get_i(p) -> int:
it = p.iteration
bs = p.batch_size
i = p.batch_index
return it * bs + i
def get_args(self, p, *args_) -> list[ADetailerArgs]:
"""
`args_` is at least 1 in length by `is_ad_enabled` immediately above
"""
args = [arg for arg in args_ if isinstance(arg, dict)]
if not args:
message = f"[-] ADetailer: Invalid arguments passed to ADetailer: {args_!r}"
raise ValueError(message)
if hasattr(p, "_ad_xyz"):
args[0] = {**args[0], **p._ad_xyz}
all_inputs = []
for n, arg_dict in enumerate(args, 1):
try:
inp = ADetailerArgs(**arg_dict)
except ValueError as e:
msgs = [
f"[-] ADetailer: ValidationError when validating {ordinal(n)} arguments: {e}\n"
]
for attr in ALL_ARGS.attrs:
arg = arg_dict.get(attr)
dtype = type(arg)
arg = "DEFAULT" if arg is None else repr(arg)
msgs.append(f" {attr}: {arg} ({dtype})")
raise ValueError("\n".join(msgs)) from e
all_inputs.append(inp)
return all_inputs
def extra_params(self, arg_list: list[ADetailerArgs]) -> dict:
params = {}
for n, args in enumerate(arg_list):
params.update(args.extra_params(suffix=suffix(n)))
params["ADetailer version"] = __version__
return params
@staticmethod
def get_ultralytics_device() -> str:
if "adetailer" in shared.cmd_opts.use_cpu:
return "cpu"
if platform.system() == "Darwin":
return ""
vram_args = ["lowvram", "medvram", "medvram_sdxl"]
if any(getattr(cmd_opts, vram, False) for vram in vram_args):
return "cpu"
return ""
def prompt_blank_replacement(
self, all_prompts: list[str], i: int, default: str
) -> str:
if not all_prompts:
return default
if i < len(all_prompts):
return all_prompts[i]
j = i % len(all_prompts)
return all_prompts[j]
def _get_prompt(
self,
ad_prompt: str,
all_prompts: list[str],
i: int,
default: str,
replacements: list[PromptSR],
) -> list[str]:
prompts = re.split(r"\s*\[SEP\]\s*", ad_prompt)
blank_replacement = self.prompt_blank_replacement(all_prompts, i, default)
for n in range(len(prompts)):
if not prompts[n]:
prompts[n] = blank_replacement
elif "[PROMPT]" in prompts[n]:
prompts[n] = prompts[n].replace("[PROMPT]", f" {blank_replacement} ")
for pair in replacements:
prompts[n] = prompts[n].replace(pair.s, pair.r)
return prompts
def get_prompt(self, p, args: ADetailerArgs) -> tuple[list[str], list[str]]:
i = self.get_i(p)
prompt_sr = p._ad_xyz_prompt_sr if hasattr(p, "_ad_xyz_prompt_sr") else []
prompt = self._get_prompt(args.ad_prompt, p.all_prompts, i, p.prompt, prompt_sr)
negative_prompt = self._get_prompt(
args.ad_negative_prompt,
p.all_negative_prompts,
i,
p.negative_prompt,
prompt_sr,
)
return prompt, negative_prompt
def get_seed(self, p) -> tuple[int, int]:
i = self.get_i(p)
if not p.all_seeds:
seed = p.seed
elif i < len(p.all_seeds):
seed = p.all_seeds[i]
else:
j = i % len(p.all_seeds)
seed = p.all_seeds[j]
if not p.all_subseeds:
subseed = p.subseed
elif i < len(p.all_subseeds):
subseed = p.all_subseeds[i]
else:
j = i % len(p.all_subseeds)
subseed = p.all_subseeds[j]
return seed, subseed
def get_width_height(self, p, args: ADetailerArgs) -> tuple[int, int]:
if args.ad_use_inpaint_width_height:
width = args.ad_inpaint_width
height = args.ad_inpaint_height
elif hasattr(p, "_ad_orig"):
width = p._ad_orig.width
height = p._ad_orig.height
else:
width = p.width
height = p.height
return width, height
def get_steps(self, p, args: ADetailerArgs) -> int:
if args.ad_use_steps:
return args.ad_steps
if hasattr(p, "_ad_orig"):
return p._ad_orig.steps
return p.steps
def get_cfg_scale(self, p, args: ADetailerArgs) -> float:
return args.ad_cfg_scale if args.ad_use_cfg_scale else p.cfg_scale
def get_sampler(self, p, args: ADetailerArgs) -> str:
if args.ad_use_sampler:
return args.ad_sampler
if hasattr(p, "_ad_orig"):
return p._ad_orig.sampler_name
return p.sampler_name
def get_override_settings(self, p, args: ADetailerArgs) -> dict[str, Any]:
d = {}
if args.ad_use_clip_skip:
d["CLIP_stop_at_last_layers"] = args.ad_clip_skip
if (
args.ad_use_checkpoint
and args.ad_checkpoint
and args.ad_checkpoint not in ("None", "Use same checkpoint")
):
d["sd_model_checkpoint"] = args.ad_checkpoint
if (
args.ad_use_vae
and args.ad_vae
and args.ad_vae not in ("None", "Use same VAE")
):
d["sd_vae"] = args.ad_vae
return d
def get_initial_noise_multiplier(self, p, args: ADetailerArgs) -> float | None:
return args.ad_noise_multiplier if args.ad_use_noise_multiplier else None
@staticmethod
def infotext(p) -> str:
return create_infotext(
p, p.all_prompts, p.all_seeds, p.all_subseeds, None, 0, 0
)
def write_params_txt(self, content: str) -> None:
params_txt = Path(paths.data_path, "params.txt")
with suppress(Exception):
params_txt.write_text(content, encoding="utf-8")
@staticmethod
def script_args_copy(script_args):
type_: type[list] | type[tuple] = type(script_args)
result = []
for arg in script_args:
try:
a = copy(arg)
except TypeError:
a = arg
result.append(a)
return type_(result)
def script_filter(self, p, args: ADetailerArgs):
script_runner = copy(p.scripts)
script_args = self.script_args_copy(p.script_args)
ad_only_seleted_scripts = opts.data.get("ad_only_seleted_scripts", True)
if not ad_only_seleted_scripts:
return script_runner, script_args
ad_script_names = opts.data.get("ad_script_names", SCRIPT_DEFAULT)
script_names_set = {
name
for script_name in ad_script_names.split(",")
for name in (script_name, script_name.strip())
}
if args.ad_controlnet_model != "None":
script_names_set.add("controlnet")
filtered_alwayson = []
for script_object in script_runner.alwayson_scripts:
filepath = script_object.filename
filename = Path(filepath).stem
if filename in script_names_set:
filtered_alwayson.append(script_object)
script_runner.alwayson_scripts = filtered_alwayson
return script_runner, script_args
def disable_controlnet_units(
self, script_args: list[Any] | tuple[Any, ...]
) -> None:
for obj in script_args:
if "controlnet" in obj.__class__.__name__.lower():
if hasattr(obj, "enabled"):
obj.enabled = False
if hasattr(obj, "input_mode"):
obj.input_mode = getattr(obj.input_mode, "SIMPLE", "simple")
elif isinstance(obj, dict) and "module" in obj:
obj["enabled"] = False
def get_i2i_p(self, p, args: ADetailerArgs, image):
seed, subseed = self.get_seed(p)
width, height = self.get_width_height(p, args)
steps = self.get_steps(p, args)
cfg_scale = self.get_cfg_scale(p, args)
initial_noise_multiplier = self.get_initial_noise_multiplier(p, args)
sampler_name = self.get_sampler(p, args)
override_settings = self.get_override_settings(p, args)
i2i = StableDiffusionProcessingImg2Img(
init_images=[image],
resize_mode=0,
denoising_strength=args.ad_denoising_strength,
mask=None,
mask_blur=args.ad_mask_blur,
inpainting_fill=1,
inpaint_full_res=args.ad_inpaint_only_masked,
inpaint_full_res_padding=args.ad_inpaint_only_masked_padding,
inpainting_mask_invert=0,
initial_noise_multiplier=initial_noise_multiplier,
sd_model=p.sd_model,
outpath_samples=p.outpath_samples,
outpath_grids=p.outpath_grids,
prompt="", # replace later
negative_prompt="",
styles=p.styles,
seed=seed,
subseed=subseed,
subseed_strength=p.subseed_strength,
seed_resize_from_h=p.seed_resize_from_h,
seed_resize_from_w=p.seed_resize_from_w,
sampler_name=sampler_name,
batch_size=1,
n_iter=1,
steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
restore_faces=args.ad_restore_face,
tiling=p.tiling,
extra_generation_params=p.extra_generation_params,
do_not_save_samples=True,
do_not_save_grid=True,
override_settings=override_settings,
)
i2i.cached_c = [None, None]
i2i.cached_uc = [None, None]
i2i.scripts, i2i.script_args = self.script_filter(p, args)
i2i._ad_disabled = True
i2i._ad_inner = True
if args.ad_controlnet_model != "Passthrough":
self.disable_controlnet_units(i2i.script_args)
if args.ad_controlnet_model not in ["None", "Passthrough"]:
self.update_controlnet_args(i2i, args)
elif args.ad_controlnet_model == "None":
i2i.control_net_enabled = False
return i2i
def save_image(self, p, image, *, condition: str, suffix: str) -> None:
i = self.get_i(p)
if p.all_prompts:
i %= len(p.all_prompts)
save_prompt = p.all_prompts[i]
else:
save_prompt = p.prompt
seed, _ = self.get_seed(p)
if opts.data.get(condition, False):
images.save_image(
image=image,
path=p.outpath_samples,
basename="",
seed=seed,
prompt=save_prompt,
extension=opts.samples_format,
info=self.infotext(p),
p=p,
suffix=suffix,
)
def get_ad_model(self, name: str):
if name not in model_mapping:
msg = f"[-] ADetailer: Model {name!r} not found. Available models: {list(model_mapping.keys())}"
raise ValueError(msg)
return model_mapping[name]
def sort_bboxes(self, pred: PredictOutput) -> PredictOutput:
sortby = opts.data.get("ad_bbox_sortby", BBOX_SORTBY[0])
sortby_idx = BBOX_SORTBY.index(sortby)
return sort_bboxes(pred, sortby_idx)
def pred_preprocessing(self, pred: PredictOutput, args: ADetailerArgs):
pred = filter_by_ratio(
pred, low=args.ad_mask_min_ratio, high=args.ad_mask_max_ratio
)
pred = filter_k_largest(pred, k=args.ad_mask_k_largest)
pred = self.sort_bboxes(pred)
return mask_preprocess(
pred.masks,
kernel=args.ad_dilate_erode,
x_offset=args.ad_x_offset,
y_offset=args.ad_y_offset,
merge_invert=args.ad_mask_merge_invert,
)
@staticmethod
def ensure_rgb_image(image: Any):
if not isinstance(image, Image.Image):
image = to_pil_image(image)
if image.mode != "RGB":
image = image.convert("RGB")
return image
@staticmethod
def i2i_prompts_replace(
i2i, prompts: list[str], negative_prompts: list[str], j: int
) -> None:
i1 = min(j, len(prompts) - 1)
i2 = min(j, len(negative_prompts) - 1)
prompt = prompts[i1]
negative_prompt = negative_prompts[i2]
i2i.prompt = prompt
i2i.negative_prompt = negative_prompt
@staticmethod
def compare_prompt(p, processed, n: int = 0):
if p.prompt != processed.all_prompts[0]:
print(
f"[-] ADetailer: applied {ordinal(n + 1)} ad_prompt: {processed.all_prompts[0]!r}"
)
if p.negative_prompt != processed.all_negative_prompts[0]:
print(
f"[-] ADetailer: applied {ordinal(n + 1)} ad_negative_prompt: {processed.all_negative_prompts[0]!r}"
)
@staticmethod
def need_call_process(p) -> bool:
if p.scripts is None:
return False
i = p.batch_index
bs = p.batch_size
return i == bs - 1
@staticmethod
def need_call_postprocess(p) -> bool:
if p.scripts is None:
return False
return p.batch_index == 0
@staticmethod
def get_i2i_init_image(p, pp):
if getattr(p, "_ad_skip_img2img", False):
return p.init_images[0]
return pp.image
@staticmethod
def get_each_tap_seed(seed: int, i: int):
use_same_seed = shared.opts.data.get("ad_same_seed_for_each_tap", False)
return seed if use_same_seed else seed + i
@staticmethod
def is_img2img_inpaint(p) -> bool:
return hasattr(p, "image_mask") and bool(p.image_mask)
@rich_traceback
def process(self, p, *args_):
if getattr(p, "_ad_disabled", False):
return
# if self.is_img2img_inpaint(p):
# p._ad_disabled = True
# msg = "[-] ADetailer: img2img inpainting detected. adetailer disabled."
# print(msg)
# return
if self.is_ad_enabled(*args_):
arg_list = self.get_args(p, *args_)
self.check_skip_img2img(p, *args_)
extra_params = self.extra_params(arg_list)
p.extra_generation_params.update(extra_params)
else:
p._ad_disabled = True
def _postprocess_image_inner(
self, p, pp, args: ADetailerArgs, *, n: int = 0
) -> bool:
"""
Returns
-------
bool
`True` if image was processed, `False` otherwise.
"""
if state.interrupted or state.skipped:
return False
i = self.get_i(p)
i2i = self.get_i2i_p(p, args, pp.image)
seed, subseed = self.get_seed(p)
ad_prompts, ad_negatives = self.get_prompt(p, args)
is_mediapipe = args.ad_model.lower().startswith("mediapipe")
kwargs = {}
if is_mediapipe:
predictor = mediapipe_predict
ad_model = args.ad_model
else:
predictor = ultralytics_predict
ad_model = self.get_ad_model(args.ad_model)
kwargs["device"] = self.ultralytics_device
with change_torch_load():
pred = predictor(ad_model, pp.image, args.ad_confidence, **kwargs)
masks = self.pred_preprocessing(pred, args)
shared.state.assign_current_image(pred.preview)
if not masks:
print(
f"[-] ADetailer: nothing detected on image {i + 1} with {ordinal(n + 1)} settings."
)
return False
self.save_image(
p,
pred.preview,
condition="ad_save_previews",
suffix="-ad-preview" + suffix(n, "-"),
)
steps = len(masks)
processed = None
state.job_count += steps
if is_mediapipe:
print(f"mediapipe: {steps} detected.")
p2 = copy(i2i)
for j in range(steps):
p2.image_mask = masks[j]
p2.init_images[0] = self.ensure_rgb_image(p2.init_images[0])
self.i2i_prompts_replace(p2, ad_prompts, ad_negatives, j)
if re.match(r"^\s*\[SKIP\]\s*$", p2.prompt):
continue
p2.seed = self.get_each_tap_seed(seed, j)
p2.subseed = self.get_each_tap_seed(subseed, j)
try:
processed = process_images(p2)
except NansException as e:
msg = f"[-] ADetailer: 'NansException' occurred with {ordinal(n + 1)} settings.\n{e}"
print(msg, file=sys.stderr)
continue
finally:
p2.close()
self.compare_prompt(p2, processed, n=n)
p2 = copy(i2i)
p2.init_images = [processed.images[0]]
if processed is not None:
pp.image = processed.images[0]
return True
return False
@rich_traceback
def postprocess_image(self, p, pp, *args_):
if getattr(p, "_ad_disabled", False) or not self.is_ad_enabled(*args_):
return
pp.image = self.get_i2i_init_image(p, pp)
pp.image = self.ensure_rgb_image(pp.image)
init_image = copy(pp.image)
arg_list = self.get_args(p, *args_)
params_txt_content = Path(paths.data_path, "params.txt").read_text("utf-8")
if self.need_call_postprocess(p):
dummy = Processed(p, [], p.seed, "")
with preseve_prompts(p):
p.scripts.postprocess(copy(p), dummy)
is_processed = False
with CNHijackRestore(), pause_total_tqdm(), cn_allow_script_control():
for n, args in enumerate(arg_list):
if args.ad_model == "None":
continue
is_processed |= self._postprocess_image_inner(p, pp, args, n=n)
if is_processed and not getattr(p, "_ad_skip_img2img", False):
self.save_image(
p, init_image, condition="ad_save_images_before", suffix="-ad-before"
)
if self.need_call_process(p):
with preseve_prompts(p):
copy_p = copy(p)
if hasattr(p.scripts, "before_process"):
p.scripts.before_process(copy_p)
p.scripts.process(copy_p)
self.write_params_txt(params_txt_content)
def on_after_component(component, **_kwargs):
global txt2img_submit_button, img2img_submit_button
if getattr(component, "elem_id", None) == "txt2img_generate":
txt2img_submit_button = component
return
if getattr(component, "elem_id", None) == "img2img_generate":
img2img_submit_button = component
def on_ui_settings():
section = ("ADetailer", AFTER_DETAILER)
shared.opts.add_option(
"ad_max_models",
shared.OptionInfo(
default=2,
label="Max models",
component=gr.Slider,
component_args={"minimum": 1, "maximum": 10, "step": 1},
section=section,
),
)
shared.opts.add_option(
"ad_extra_models_dir",
shared.OptionInfo(
default="",
label="Extra path to scan adetailer models",
component=gr.Textbox,
section=section,
),
)
shared.opts.add_option(
"ad_save_previews",
shared.OptionInfo(False, "Save mask previews", section=section),
)
shared.opts.add_option(
"ad_save_images_before",
shared.OptionInfo(False, "Save images before ADetailer", section=section),
)
shared.opts.add_option(
"ad_only_seleted_scripts",
shared.OptionInfo(
True, "Apply only selected scripts to ADetailer", section=section
),
)
textbox_args = {
"placeholder": "comma-separated list of script names",
"interactive": True,
}
shared.opts.add_option(
"ad_script_names",
shared.OptionInfo(
default=SCRIPT_DEFAULT,
label="Script names to apply to ADetailer (separated by comma)",
component=gr.Textbox,
component_args=textbox_args,
section=section,
),
)
shared.opts.add_option(
"ad_bbox_sortby",
shared.OptionInfo(
default="None",
label="Sort bounding boxes by",
component=gr.Radio,
component_args={"choices": BBOX_SORTBY},
section=section,
),
)
shared.opts.add_option(
"ad_same_seed_for_each_tap",
shared.OptionInfo(
False, "Use same seed for each tab in adetailer", section=section
),
)
# xyz_grid
class PromptSR(NamedTuple):
s: str
r: str
def set_value(p, x: Any, xs: Any, *, field: str):
if not hasattr(p, "_ad_xyz"):
p._ad_xyz = {}
p._ad_xyz[field] = x
def search_and_replace_prompt(p, x: Any, xs: Any, replace_in_main_prompt: bool):
if replace_in_main_prompt:
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
if not hasattr(p, "_ad_xyz_prompt_sr"):
p._ad_xyz_prompt_sr = []
p._ad_xyz_prompt_sr.append(PromptSR(s=xs[0], r=x))
def make_axis_on_xyz_grid():
xyz_grid = None
for script in scripts.scripts_data:
if script.script_class.__module__ == "xyz_grid.py":
xyz_grid = script.module
break
if xyz_grid is None:
return
model_list = ["None", *model_mapping.keys()]
samplers = [sampler.name for sampler in all_samplers]
axis = [
xyz_grid.AxisOption(
"[ADetailer] ADetailer model 1st",
str,
partial(set_value, field="ad_model"),
choices=lambda: model_list,
),
xyz_grid.AxisOption(
"[ADetailer] ADetailer prompt 1st",
str,
partial(set_value, field="ad_prompt"),
),
xyz_grid.AxisOption(
"[ADetailer] ADetailer negative prompt 1st",
str,
partial(set_value, field="ad_negative_prompt"),
),
xyz_grid.AxisOption(
"[ADetailer] Prompt S/R (AD 1st)",
str,
partial(search_and_replace_prompt, replace_in_main_prompt=False),
),
xyz_grid.AxisOption(
"[ADetailer] Prompt S/R (AD 1st and main prompt)",
str,
partial(search_and_replace_prompt, replace_in_main_prompt=True),
),
xyz_grid.AxisOption(
"[ADetailer] Mask erosion / dilation 1st",
int,
partial(set_value, field="ad_dilate_erode"),
),
xyz_grid.AxisOption(
"[ADetailer] Inpaint denoising strength 1st",
float,
partial(set_value, field="ad_denoising_strength"),
),
xyz_grid.AxisOption(
"[ADetailer] Inpaint only masked 1st",
str,
partial(set_value, field="ad_inpaint_only_masked"),
choices=lambda: ["True", "False"],
),
xyz_grid.AxisOption(
"[ADetailer] Inpaint only masked padding 1st",
int,
partial(set_value, field="ad_inpaint_only_masked_padding"),
),
xyz_grid.AxisOption(
"[ADetailer] ADetailer sampler 1st",
str,
partial(set_value, field="ad_sampler"),
choices=lambda: samplers,
),
xyz_grid.AxisOption(
"[ADetailer] ControlNet model 1st",
str,
partial(set_value, field="ad_controlnet_model"),
choices=lambda: ["None", *get_cn_models()],
),
]
if not any(x.label.startswith("[ADetailer]") for x in xyz_grid.axis_options):
xyz_grid.axis_options.extend(axis)
def on_before_ui():
try:
make_axis_on_xyz_grid()
except Exception:
error = traceback.format_exc()
print(
f"[-] ADetailer: xyz_grid error:\n{error}",
file=sys.stderr,
)
# api
def add_api_endpoints(_: gr.Blocks, app: FastAPI):
@app.get("/adetailer/v1/version")
def version():
return {"version": __version__}
@app.get("/adetailer/v1/schema")
def schema():
return ADetailerArgs.schema()
@app.get("/adetailer/v1/ad_model")
def ad_model():
return {"ad_model": list(model_mapping)}
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_after_component(on_after_component)
script_callbacks.on_app_started(add_api_endpoints)
script_callbacks.on_before_ui(on_before_ui)
|