wildcards / !adetailer.py
Asif782's picture
Upload !adetailer.py
f2b239d verified
from __future__ import annotations
import os
import platform
import re
import sys
import traceback
from contextlib import contextmanager, suppress
from copy import copy
from functools import partial
from pathlib import Path
from textwrap import dedent
from typing import TYPE_CHECKING, Any, NamedTuple
import gradio as gr
import torch
from PIL import Image
from rich import print
from torchvision.transforms.functional import to_pil_image
import modules
from adetailer import (
AFTER_DETAILER,
__version__,
get_models,
mediapipe_predict,
ultralytics_predict,
)
from adetailer.args import ALL_ARGS, BBOX_SORTBY, ADetailerArgs, SkipImg2ImgOrig
from adetailer.common import PredictOutput
from adetailer.mask import (
filter_by_ratio,
filter_k_largest,
mask_preprocess,
sort_bboxes,
)
from adetailer.traceback import rich_traceback
from adetailer.ui import WebuiInfo, adui, ordinal, suffix
from controlnet_ext import ControlNetExt, controlnet_exists, get_cn_models
from controlnet_ext.restore import (
CNHijackRestore,
cn_allow_script_control,
)
from modules import images, paths, safe, script_callbacks, scripts, shared
from modules.devices import NansException
from modules.processing import (
Processed,
StableDiffusionProcessingImg2Img,
create_infotext,
process_images,
)
from modules.sd_samplers import all_samplers
from modules.shared import cmd_opts, opts, state
if TYPE_CHECKING:
from fastapi import FastAPI
no_huggingface = getattr(cmd_opts, "ad_no_huggingface", False)
adetailer_dir = Path(paths.models_path, "adetailer")
extra_models_dir = shared.opts.data.get("ad_extra_models_dir", "")
model_mapping = get_models(
adetailer_dir, extra_dir=extra_models_dir, huggingface=not no_huggingface
)
txt2img_submit_button = img2img_submit_button = None
SCRIPT_DEFAULT = "dynamic_prompting,dynamic_thresholding,wildcard_recursive,wildcards,lora_block_weight,negpip"
if (
not adetailer_dir.exists()
and adetailer_dir.parent.exists()
and os.access(adetailer_dir.parent, os.W_OK)
):
adetailer_dir.mkdir()
print(
f"[-] ADetailer initialized. version: {__version__}, num models: {len(model_mapping)}"
)
@contextmanager
def change_torch_load():
orig = torch.load
try:
torch.load = safe.unsafe_torch_load
yield
finally:
torch.load = orig
@contextmanager
def pause_total_tqdm():
orig = opts.data.get("multiple_tqdm", True)
try:
opts.data["multiple_tqdm"] = False
yield
finally:
opts.data["multiple_tqdm"] = orig
@contextmanager
def preseve_prompts(p):
all_pt = copy(p.all_prompts)
all_ng = copy(p.all_negative_prompts)
try:
yield
finally:
p.all_prompts = all_pt
p.all_negative_prompts = all_ng
class AfterDetailerScript(scripts.Script):
def __init__(self):
super().__init__()
self.ultralytics_device = self.get_ultralytics_device()
self.controlnet_ext = None
def __repr__(self):
return f"{self.__class__.__name__}(version={__version__})"
def title(self):
return AFTER_DETAILER
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
num_models = opts.data.get("ad_max_models", 2)
ad_model_list = list(model_mapping.keys())
sampler_names = [sampler.name for sampler in all_samplers]
try:
checkpoint_list = modules.sd_models.checkpoint_tiles(use_shorts=True)
except TypeError:
checkpoint_list = modules.sd_models.checkpoint_tiles()
vae_list = modules.shared_items.sd_vae_items()
webui_info = WebuiInfo(
ad_model_list=ad_model_list,
sampler_names=sampler_names,
t2i_button=txt2img_submit_button,
i2i_button=img2img_submit_button,
checkpoints_list=checkpoint_list,
vae_list=vae_list,
)
components, infotext_fields = adui(num_models, is_img2img, webui_info)
self.infotext_fields = infotext_fields
return components
def init_controlnet_ext(self) -> None:
if self.controlnet_ext is not None:
return
self.controlnet_ext = ControlNetExt()
if controlnet_exists:
try:
self.controlnet_ext.init_controlnet()
except ImportError:
error = traceback.format_exc()
print(
f"[-] ADetailer: ControlNetExt init failed:\n{error}",
file=sys.stderr,
)
def update_controlnet_args(self, p, args: ADetailerArgs) -> None:
if self.controlnet_ext is None:
self.init_controlnet_ext()
if (
self.controlnet_ext is not None
and self.controlnet_ext.cn_available
and args.ad_controlnet_model != "None"
):
self.controlnet_ext.update_scripts_args(
p,
model=args.ad_controlnet_model,
module=args.ad_controlnet_module,
weight=args.ad_controlnet_weight,
guidance_start=args.ad_controlnet_guidance_start,
guidance_end=args.ad_controlnet_guidance_end,
)
def is_ad_enabled(self, *args_) -> bool:
arg_list = [arg for arg in args_ if isinstance(arg, dict)]
if not args_ or not arg_list:
message = f"""
[-] ADetailer: Invalid arguments passed to ADetailer.
input: {args_!r}
ADetailer disabled.
"""
print(dedent(message), file=sys.stderr)
return False
ad_enabled = args_[0] if isinstance(args_[0], bool) else True
not_none = any(arg.get("ad_model", "None") != "None" for arg in arg_list)
return ad_enabled and not_none
def check_skip_img2img(self, p, *args_) -> None:
if (
hasattr(p, "_ad_skip_img2img")
or not hasattr(p, "init_images")
or not p.init_images
):
return
if len(args_) >= 2 and isinstance(args_[1], bool):
p._ad_skip_img2img = args_[1]
if args_[1]:
p._ad_orig = SkipImg2ImgOrig(
steps=p.steps,
sampler_name=p.sampler_name,
width=p.width,
height=p.height,
)
p.steps = 1
p.sampler_name = "Euler"
p.width = 128
p.height = 128
else:
p._ad_skip_img2img = False
@staticmethod
def get_i(p) -> int:
it = p.iteration
bs = p.batch_size
i = p.batch_index
return it * bs + i
def get_args(self, p, *args_) -> list[ADetailerArgs]:
"""
`args_` is at least 1 in length by `is_ad_enabled` immediately above
"""
args = [arg for arg in args_ if isinstance(arg, dict)]
if not args:
message = f"[-] ADetailer: Invalid arguments passed to ADetailer: {args_!r}"
raise ValueError(message)
if hasattr(p, "_ad_xyz"):
args[0] = {**args[0], **p._ad_xyz}
all_inputs = []
for n, arg_dict in enumerate(args, 1):
try:
inp = ADetailerArgs(**arg_dict)
except ValueError as e:
msgs = [
f"[-] ADetailer: ValidationError when validating {ordinal(n)} arguments: {e}\n"
]
for attr in ALL_ARGS.attrs:
arg = arg_dict.get(attr)
dtype = type(arg)
arg = "DEFAULT" if arg is None else repr(arg)
msgs.append(f" {attr}: {arg} ({dtype})")
raise ValueError("\n".join(msgs)) from e
all_inputs.append(inp)
return all_inputs
def extra_params(self, arg_list: list[ADetailerArgs]) -> dict:
params = {}
for n, args in enumerate(arg_list):
params.update(args.extra_params(suffix=suffix(n)))
params["ADetailer version"] = __version__
return params
@staticmethod
def get_ultralytics_device() -> str:
if "adetailer" in shared.cmd_opts.use_cpu:
return "cpu"
if platform.system() == "Darwin":
return ""
vram_args = ["lowvram", "medvram", "medvram_sdxl"]
if any(getattr(cmd_opts, vram, False) for vram in vram_args):
return "cpu"
return ""
def prompt_blank_replacement(
self, all_prompts: list[str], i: int, default: str
) -> str:
if not all_prompts:
return default
if i < len(all_prompts):
return all_prompts[i]
j = i % len(all_prompts)
return all_prompts[j]
def _get_prompt(
self,
ad_prompt: str,
all_prompts: list[str],
i: int,
default: str,
replacements: list[PromptSR],
) -> list[str]:
prompts = re.split(r"\s*\[SEP\]\s*", ad_prompt)
blank_replacement = self.prompt_blank_replacement(all_prompts, i, default)
for n in range(len(prompts)):
if not prompts[n]:
prompts[n] = blank_replacement
elif "[PROMPT]" in prompts[n]:
prompts[n] = prompts[n].replace("[PROMPT]", f" {blank_replacement} ")
for pair in replacements:
prompts[n] = prompts[n].replace(pair.s, pair.r)
return prompts
def get_prompt(self, p, args: ADetailerArgs) -> tuple[list[str], list[str]]:
i = self.get_i(p)
prompt_sr = p._ad_xyz_prompt_sr if hasattr(p, "_ad_xyz_prompt_sr") else []
prompt = self._get_prompt(args.ad_prompt, p.all_prompts, i, p.prompt, prompt_sr)
negative_prompt = self._get_prompt(
args.ad_negative_prompt,
p.all_negative_prompts,
i,
p.negative_prompt,
prompt_sr,
)
return prompt, negative_prompt
def get_seed(self, p) -> tuple[int, int]:
i = self.get_i(p)
if not p.all_seeds:
seed = p.seed
elif i < len(p.all_seeds):
seed = p.all_seeds[i]
else:
j = i % len(p.all_seeds)
seed = p.all_seeds[j]
if not p.all_subseeds:
subseed = p.subseed
elif i < len(p.all_subseeds):
subseed = p.all_subseeds[i]
else:
j = i % len(p.all_subseeds)
subseed = p.all_subseeds[j]
return seed, subseed
def get_width_height(self, p, args: ADetailerArgs) -> tuple[int, int]:
if args.ad_use_inpaint_width_height:
width = args.ad_inpaint_width
height = args.ad_inpaint_height
elif hasattr(p, "_ad_orig"):
width = p._ad_orig.width
height = p._ad_orig.height
else:
width = p.width
height = p.height
return width, height
def get_steps(self, p, args: ADetailerArgs) -> int:
if args.ad_use_steps:
return args.ad_steps
if hasattr(p, "_ad_orig"):
return p._ad_orig.steps
return p.steps
def get_cfg_scale(self, p, args: ADetailerArgs) -> float:
return args.ad_cfg_scale if args.ad_use_cfg_scale else p.cfg_scale
def get_sampler(self, p, args: ADetailerArgs) -> str:
if args.ad_use_sampler:
return args.ad_sampler
if hasattr(p, "_ad_orig"):
return p._ad_orig.sampler_name
return p.sampler_name
def get_override_settings(self, p, args: ADetailerArgs) -> dict[str, Any]:
d = {}
if args.ad_use_clip_skip:
d["CLIP_stop_at_last_layers"] = args.ad_clip_skip
if (
args.ad_use_checkpoint
and args.ad_checkpoint
and args.ad_checkpoint not in ("None", "Use same checkpoint")
):
d["sd_model_checkpoint"] = args.ad_checkpoint
if (
args.ad_use_vae
and args.ad_vae
and args.ad_vae not in ("None", "Use same VAE")
):
d["sd_vae"] = args.ad_vae
return d
def get_initial_noise_multiplier(self, p, args: ADetailerArgs) -> float | None:
return args.ad_noise_multiplier if args.ad_use_noise_multiplier else None
@staticmethod
def infotext(p) -> str:
return create_infotext(
p, p.all_prompts, p.all_seeds, p.all_subseeds, None, 0, 0
)
def write_params_txt(self, content: str) -> None:
params_txt = Path(paths.data_path, "params.txt")
with suppress(Exception):
params_txt.write_text(content, encoding="utf-8")
@staticmethod
def script_args_copy(script_args):
type_: type[list] | type[tuple] = type(script_args)
result = []
for arg in script_args:
try:
a = copy(arg)
except TypeError:
a = arg
result.append(a)
return type_(result)
def script_filter(self, p, args: ADetailerArgs):
script_runner = copy(p.scripts)
script_args = self.script_args_copy(p.script_args)
ad_only_seleted_scripts = opts.data.get("ad_only_seleted_scripts", True)
if not ad_only_seleted_scripts:
return script_runner, script_args
ad_script_names = opts.data.get("ad_script_names", SCRIPT_DEFAULT)
script_names_set = {
name
for script_name in ad_script_names.split(",")
for name in (script_name, script_name.strip())
}
if args.ad_controlnet_model != "None":
script_names_set.add("controlnet")
filtered_alwayson = []
for script_object in script_runner.alwayson_scripts:
filepath = script_object.filename
filename = Path(filepath).stem
if filename in script_names_set:
filtered_alwayson.append(script_object)
script_runner.alwayson_scripts = filtered_alwayson
return script_runner, script_args
def disable_controlnet_units(
self, script_args: list[Any] | tuple[Any, ...]
) -> None:
for obj in script_args:
if "controlnet" in obj.__class__.__name__.lower():
if hasattr(obj, "enabled"):
obj.enabled = False
if hasattr(obj, "input_mode"):
obj.input_mode = getattr(obj.input_mode, "SIMPLE", "simple")
elif isinstance(obj, dict) and "module" in obj:
obj["enabled"] = False
def get_i2i_p(self, p, args: ADetailerArgs, image):
seed, subseed = self.get_seed(p)
width, height = self.get_width_height(p, args)
steps = self.get_steps(p, args)
cfg_scale = self.get_cfg_scale(p, args)
initial_noise_multiplier = self.get_initial_noise_multiplier(p, args)
sampler_name = self.get_sampler(p, args)
override_settings = self.get_override_settings(p, args)
i2i = StableDiffusionProcessingImg2Img(
init_images=[image],
resize_mode=0,
denoising_strength=args.ad_denoising_strength,
mask=None,
mask_blur=args.ad_mask_blur,
inpainting_fill=1,
inpaint_full_res=args.ad_inpaint_only_masked,
inpaint_full_res_padding=args.ad_inpaint_only_masked_padding,
inpainting_mask_invert=0,
initial_noise_multiplier=initial_noise_multiplier,
sd_model=p.sd_model,
outpath_samples=p.outpath_samples,
outpath_grids=p.outpath_grids,
prompt="", # replace later
negative_prompt="",
styles=p.styles,
seed=seed,
subseed=subseed,
subseed_strength=p.subseed_strength,
seed_resize_from_h=p.seed_resize_from_h,
seed_resize_from_w=p.seed_resize_from_w,
sampler_name=sampler_name,
batch_size=1,
n_iter=1,
steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
restore_faces=args.ad_restore_face,
tiling=p.tiling,
extra_generation_params=p.extra_generation_params,
do_not_save_samples=True,
do_not_save_grid=True,
override_settings=override_settings,
)
i2i.cached_c = [None, None]
i2i.cached_uc = [None, None]
i2i.scripts, i2i.script_args = self.script_filter(p, args)
i2i._ad_disabled = True
i2i._ad_inner = True
if args.ad_controlnet_model != "Passthrough":
self.disable_controlnet_units(i2i.script_args)
if args.ad_controlnet_model not in ["None", "Passthrough"]:
self.update_controlnet_args(i2i, args)
elif args.ad_controlnet_model == "None":
i2i.control_net_enabled = False
return i2i
def save_image(self, p, image, *, condition: str, suffix: str) -> None:
i = self.get_i(p)
if p.all_prompts:
i %= len(p.all_prompts)
save_prompt = p.all_prompts[i]
else:
save_prompt = p.prompt
seed, _ = self.get_seed(p)
if opts.data.get(condition, False):
images.save_image(
image=image,
path=p.outpath_samples,
basename="",
seed=seed,
prompt=save_prompt,
extension=opts.samples_format,
info=self.infotext(p),
p=p,
suffix=suffix,
)
def get_ad_model(self, name: str):
if name not in model_mapping:
msg = f"[-] ADetailer: Model {name!r} not found. Available models: {list(model_mapping.keys())}"
raise ValueError(msg)
return model_mapping[name]
def sort_bboxes(self, pred: PredictOutput) -> PredictOutput:
sortby = opts.data.get("ad_bbox_sortby", BBOX_SORTBY[0])
sortby_idx = BBOX_SORTBY.index(sortby)
return sort_bboxes(pred, sortby_idx)
def pred_preprocessing(self, pred: PredictOutput, args: ADetailerArgs):
pred = filter_by_ratio(
pred, low=args.ad_mask_min_ratio, high=args.ad_mask_max_ratio
)
pred = filter_k_largest(pred, k=args.ad_mask_k_largest)
pred = self.sort_bboxes(pred)
return mask_preprocess(
pred.masks,
kernel=args.ad_dilate_erode,
x_offset=args.ad_x_offset,
y_offset=args.ad_y_offset,
merge_invert=args.ad_mask_merge_invert,
)
@staticmethod
def ensure_rgb_image(image: Any):
if not isinstance(image, Image.Image):
image = to_pil_image(image)
if image.mode != "RGB":
image = image.convert("RGB")
return image
@staticmethod
def i2i_prompts_replace(
i2i, prompts: list[str], negative_prompts: list[str], j: int
) -> None:
i1 = min(j, len(prompts) - 1)
i2 = min(j, len(negative_prompts) - 1)
prompt = prompts[i1]
negative_prompt = negative_prompts[i2]
i2i.prompt = prompt
i2i.negative_prompt = negative_prompt
@staticmethod
def compare_prompt(p, processed, n: int = 0):
if p.prompt != processed.all_prompts[0]:
print(
f"[-] ADetailer: applied {ordinal(n + 1)} ad_prompt: {processed.all_prompts[0]!r}"
)
if p.negative_prompt != processed.all_negative_prompts[0]:
print(
f"[-] ADetailer: applied {ordinal(n + 1)} ad_negative_prompt: {processed.all_negative_prompts[0]!r}"
)
@staticmethod
def need_call_process(p) -> bool:
if p.scripts is None:
return False
i = p.batch_index
bs = p.batch_size
return i == bs - 1
@staticmethod
def need_call_postprocess(p) -> bool:
if p.scripts is None:
return False
return p.batch_index == 0
@staticmethod
def get_i2i_init_image(p, pp):
if getattr(p, "_ad_skip_img2img", False):
return p.init_images[0]
return pp.image
@staticmethod
def get_each_tap_seed(seed: int, i: int):
use_same_seed = shared.opts.data.get("ad_same_seed_for_each_tap", False)
return seed if use_same_seed else seed + i
@staticmethod
def is_img2img_inpaint(p) -> bool:
return hasattr(p, "image_mask") and bool(p.image_mask)
@rich_traceback
def process(self, p, *args_):
if getattr(p, "_ad_disabled", False):
return
# if self.is_img2img_inpaint(p):
# p._ad_disabled = True
# msg = "[-] ADetailer: img2img inpainting detected. adetailer disabled."
# print(msg)
# return
if self.is_ad_enabled(*args_):
arg_list = self.get_args(p, *args_)
self.check_skip_img2img(p, *args_)
extra_params = self.extra_params(arg_list)
p.extra_generation_params.update(extra_params)
else:
p._ad_disabled = True
def _postprocess_image_inner(
self, p, pp, args: ADetailerArgs, *, n: int = 0
) -> bool:
"""
Returns
-------
bool
`True` if image was processed, `False` otherwise.
"""
if state.interrupted or state.skipped:
return False
i = self.get_i(p)
i2i = self.get_i2i_p(p, args, pp.image)
seed, subseed = self.get_seed(p)
ad_prompts, ad_negatives = self.get_prompt(p, args)
is_mediapipe = args.ad_model.lower().startswith("mediapipe")
kwargs = {}
if is_mediapipe:
predictor = mediapipe_predict
ad_model = args.ad_model
else:
predictor = ultralytics_predict
ad_model = self.get_ad_model(args.ad_model)
kwargs["device"] = self.ultralytics_device
with change_torch_load():
pred = predictor(ad_model, pp.image, args.ad_confidence, **kwargs)
masks = self.pred_preprocessing(pred, args)
shared.state.assign_current_image(pred.preview)
if not masks:
print(
f"[-] ADetailer: nothing detected on image {i + 1} with {ordinal(n + 1)} settings."
)
return False
self.save_image(
p,
pred.preview,
condition="ad_save_previews",
suffix="-ad-preview" + suffix(n, "-"),
)
steps = len(masks)
processed = None
state.job_count += steps
if is_mediapipe:
print(f"mediapipe: {steps} detected.")
p2 = copy(i2i)
for j in range(steps):
p2.image_mask = masks[j]
p2.init_images[0] = self.ensure_rgb_image(p2.init_images[0])
self.i2i_prompts_replace(p2, ad_prompts, ad_negatives, j)
if re.match(r"^\s*\[SKIP\]\s*$", p2.prompt):
continue
p2.seed = self.get_each_tap_seed(seed, j)
p2.subseed = self.get_each_tap_seed(subseed, j)
try:
processed = process_images(p2)
except NansException as e:
msg = f"[-] ADetailer: 'NansException' occurred with {ordinal(n + 1)} settings.\n{e}"
print(msg, file=sys.stderr)
continue
finally:
p2.close()
self.compare_prompt(p2, processed, n=n)
p2 = copy(i2i)
p2.init_images = [processed.images[0]]
if processed is not None:
pp.image = processed.images[0]
return True
return False
@rich_traceback
def postprocess_image(self, p, pp, *args_):
if getattr(p, "_ad_disabled", False) or not self.is_ad_enabled(*args_):
return
pp.image = self.get_i2i_init_image(p, pp)
pp.image = self.ensure_rgb_image(pp.image)
init_image = copy(pp.image)
arg_list = self.get_args(p, *args_)
params_txt_content = Path(paths.data_path, "params.txt").read_text("utf-8")
if self.need_call_postprocess(p):
dummy = Processed(p, [], p.seed, "")
with preseve_prompts(p):
p.scripts.postprocess(copy(p), dummy)
is_processed = False
with CNHijackRestore(), pause_total_tqdm(), cn_allow_script_control():
for n, args in enumerate(arg_list):
if args.ad_model == "None":
continue
is_processed |= self._postprocess_image_inner(p, pp, args, n=n)
if is_processed and not getattr(p, "_ad_skip_img2img", False):
self.save_image(
p, init_image, condition="ad_save_images_before", suffix="-ad-before"
)
if self.need_call_process(p):
with preseve_prompts(p):
copy_p = copy(p)
if hasattr(p.scripts, "before_process"):
p.scripts.before_process(copy_p)
p.scripts.process(copy_p)
self.write_params_txt(params_txt_content)
def on_after_component(component, **_kwargs):
global txt2img_submit_button, img2img_submit_button
if getattr(component, "elem_id", None) == "txt2img_generate":
txt2img_submit_button = component
return
if getattr(component, "elem_id", None) == "img2img_generate":
img2img_submit_button = component
def on_ui_settings():
section = ("ADetailer", AFTER_DETAILER)
shared.opts.add_option(
"ad_max_models",
shared.OptionInfo(
default=2,
label="Max models",
component=gr.Slider,
component_args={"minimum": 1, "maximum": 10, "step": 1},
section=section,
),
)
shared.opts.add_option(
"ad_extra_models_dir",
shared.OptionInfo(
default="",
label="Extra path to scan adetailer models",
component=gr.Textbox,
section=section,
),
)
shared.opts.add_option(
"ad_save_previews",
shared.OptionInfo(False, "Save mask previews", section=section),
)
shared.opts.add_option(
"ad_save_images_before",
shared.OptionInfo(False, "Save images before ADetailer", section=section),
)
shared.opts.add_option(
"ad_only_seleted_scripts",
shared.OptionInfo(
True, "Apply only selected scripts to ADetailer", section=section
),
)
textbox_args = {
"placeholder": "comma-separated list of script names",
"interactive": True,
}
shared.opts.add_option(
"ad_script_names",
shared.OptionInfo(
default=SCRIPT_DEFAULT,
label="Script names to apply to ADetailer (separated by comma)",
component=gr.Textbox,
component_args=textbox_args,
section=section,
),
)
shared.opts.add_option(
"ad_bbox_sortby",
shared.OptionInfo(
default="None",
label="Sort bounding boxes by",
component=gr.Radio,
component_args={"choices": BBOX_SORTBY},
section=section,
),
)
shared.opts.add_option(
"ad_same_seed_for_each_tap",
shared.OptionInfo(
False, "Use same seed for each tab in adetailer", section=section
),
)
# xyz_grid
class PromptSR(NamedTuple):
s: str
r: str
def set_value(p, x: Any, xs: Any, *, field: str):
if not hasattr(p, "_ad_xyz"):
p._ad_xyz = {}
p._ad_xyz[field] = x
def search_and_replace_prompt(p, x: Any, xs: Any, replace_in_main_prompt: bool):
if replace_in_main_prompt:
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
if not hasattr(p, "_ad_xyz_prompt_sr"):
p._ad_xyz_prompt_sr = []
p._ad_xyz_prompt_sr.append(PromptSR(s=xs[0], r=x))
def make_axis_on_xyz_grid():
xyz_grid = None
for script in scripts.scripts_data:
if script.script_class.__module__ == "xyz_grid.py":
xyz_grid = script.module
break
if xyz_grid is None:
return
model_list = ["None", *model_mapping.keys()]
samplers = [sampler.name for sampler in all_samplers]
axis = [
xyz_grid.AxisOption(
"[ADetailer] ADetailer model 1st",
str,
partial(set_value, field="ad_model"),
choices=lambda: model_list,
),
xyz_grid.AxisOption(
"[ADetailer] ADetailer prompt 1st",
str,
partial(set_value, field="ad_prompt"),
),
xyz_grid.AxisOption(
"[ADetailer] ADetailer negative prompt 1st",
str,
partial(set_value, field="ad_negative_prompt"),
),
xyz_grid.AxisOption(
"[ADetailer] Prompt S/R (AD 1st)",
str,
partial(search_and_replace_prompt, replace_in_main_prompt=False),
),
xyz_grid.AxisOption(
"[ADetailer] Prompt S/R (AD 1st and main prompt)",
str,
partial(search_and_replace_prompt, replace_in_main_prompt=True),
),
xyz_grid.AxisOption(
"[ADetailer] Mask erosion / dilation 1st",
int,
partial(set_value, field="ad_dilate_erode"),
),
xyz_grid.AxisOption(
"[ADetailer] Inpaint denoising strength 1st",
float,
partial(set_value, field="ad_denoising_strength"),
),
xyz_grid.AxisOption(
"[ADetailer] Inpaint only masked 1st",
str,
partial(set_value, field="ad_inpaint_only_masked"),
choices=lambda: ["True", "False"],
),
xyz_grid.AxisOption(
"[ADetailer] Inpaint only masked padding 1st",
int,
partial(set_value, field="ad_inpaint_only_masked_padding"),
),
xyz_grid.AxisOption(
"[ADetailer] ADetailer sampler 1st",
str,
partial(set_value, field="ad_sampler"),
choices=lambda: samplers,
),
xyz_grid.AxisOption(
"[ADetailer] ControlNet model 1st",
str,
partial(set_value, field="ad_controlnet_model"),
choices=lambda: ["None", *get_cn_models()],
),
]
if not any(x.label.startswith("[ADetailer]") for x in xyz_grid.axis_options):
xyz_grid.axis_options.extend(axis)
def on_before_ui():
try:
make_axis_on_xyz_grid()
except Exception:
error = traceback.format_exc()
print(
f"[-] ADetailer: xyz_grid error:\n{error}",
file=sys.stderr,
)
# api
def add_api_endpoints(_: gr.Blocks, app: FastAPI):
@app.get("/adetailer/v1/version")
def version():
return {"version": __version__}
@app.get("/adetailer/v1/schema")
def schema():
return ADetailerArgs.schema()
@app.get("/adetailer/v1/ad_model")
def ad_model():
return {"ad_model": list(model_mapping)}
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_after_component(on_after_component)
script_callbacks.on_app_started(add_api_endpoints)
script_callbacks.on_before_ui(on_before_ui)