|
import random |
|
import gradio as gr |
|
|
|
from modules import sd_models |
|
from modules import sd_vae |
|
from modules import ui_components |
|
from modules import shared |
|
from modules import extras |
|
from modules import images |
|
|
|
from sd_bmab import constants |
|
from sd_bmab import util |
|
from sd_bmab import detectors |
|
from sd_bmab import parameters |
|
from sd_bmab.base import context |
|
from sd_bmab.base import filter |
|
from sd_bmab.base import installer |
|
from sd_bmab import pipeline |
|
from sd_bmab import masking |
|
from sd_bmab.util import debug_print |
|
|
|
|
|
bmab_version = 'v23.12.05.0' |
|
|
|
final_images = [] |
|
last_process = None |
|
bmab_script = None |
|
gallery_select_index = 0 |
|
|
|
|
|
def create_ui(bscript, is_img2img): |
|
class ListOv(list): |
|
def __iadd__(self, x): |
|
self.append(x) |
|
return self |
|
|
|
elem = ListOv() |
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Checkbox(label=f'Enable BMAB', value=False) |
|
with gr.Column(): |
|
btn_stop = ui_components.ToolButton('βΉοΈ', visible=True, interactive=True, tooltip='stop generation', elem_id='bmab_stop_generation') |
|
with gr.Accordion(f'BMAB Preprocessor', open=False): |
|
with gr.Row(): |
|
with gr.Tab('Context', id='bmab_context', elem_id='bmab_context_tabs'): |
|
with gr.Tab('Generic'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
checkpoints = [constants.checkpoint_default] |
|
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()]) |
|
checkpoint_models = gr.Dropdown(label='CheckPoint', visible=True, value=checkpoints[0], choices=checkpoints) |
|
elem += checkpoint_models |
|
refresh_checkpoint_models = ui_components.ToolButton(value='π', visible=True, interactive=True) |
|
with gr.Column(): |
|
with gr.Row(): |
|
vaes = [constants.vae_default] |
|
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()]) |
|
vaes_models = gr.Dropdown(label='SD VAE', visible=True, value=vaes[0], choices=vaes) |
|
elem += vaes_models |
|
refresh_vae_models = ui_components.ToolButton(value='π', visible=True, interactive=True) |
|
with gr.Row(): |
|
gr.Markdown(constants.checkpoint_description) |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=0, maximum=1.5, value=1, step=0.001, label='txt2img noise multiplier for hires.fix (EXPERIMENTAL)', elem_id='bmab_txt2img_noise_multiplier') |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label='txt2img extra noise multiplier for hires.fix (EXPERIMENTAL)', elem_id='bmab_txt2img_extra_noise_multiplier') |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
dd_hiresfix_filter1 = gr.Dropdown(label='Hires.fix filter before upscale', visible=True, value=filter.filters[0], choices=filter.filters) |
|
elem += dd_hiresfix_filter1 |
|
with gr.Column(): |
|
with gr.Row(): |
|
dd_hiresfix_filter2 = gr.Dropdown(label='Hires.fix filter after upscale', visible=True, value=filter.filters[0], choices=filter.filters) |
|
elem += dd_hiresfix_filter2 |
|
with gr.Tab('Kohya Hires.fix'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Checkbox(label='Enable Kohya hires.fix', value=False) |
|
with gr.Row(): |
|
gr.HTML(constants.kohya_hiresfix_description) |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=0, maximum=0.5, step=0.01, label="Stop at, first", value=0.15) |
|
elem += gr.Slider(minimum=1, maximum=10, step=1, label="Depth, first", value=3) |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=0, maximum=0.5, step=0.01, label="Stop at, second", value=0.4) |
|
elem += gr.Slider(minimum=1, maximum=10, step=1, label="Depth, second", value=4) |
|
with gr.Row(): |
|
elem += gr.Dropdown(['bicubic', 'bilinear', 'nearest', 'nearest-exact'], label='Layer scaler', value='bicubic') |
|
elem += gr.Slider(minimum=0.1, maximum=1.0, step=0.05, label="Downsampling scale", value=0.5) |
|
elem += gr.Slider(minimum=1.0, maximum=4.0, step=0.1, label="Upsampling scale", value=2.0) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label="Smooth scaling", value=True) |
|
elem += gr.Checkbox(label="Early upsampling", value=False) |
|
elem += gr.Checkbox(label='Disable for additional passes', value=True) |
|
with gr.Tab('Resample', id='bmab_resample', elem_id='bmab_resample_tabs'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Checkbox(label='Enable self resample', value=False) |
|
with gr.Column(): |
|
elem += gr.Checkbox(label='Save image before processing', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable resample before hires.fix', value=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
checkpoints = [constants.checkpoint_default] |
|
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()]) |
|
resample_models = gr.Dropdown(label='CheckPoint', visible=True, value=checkpoints[0], choices=checkpoints) |
|
elem += resample_models |
|
refresh_resample_models = ui_components.ToolButton(value='π', visible=True, interactive=True) |
|
with gr.Column(): |
|
with gr.Row(): |
|
vaes = [constants.vae_default] |
|
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()]) |
|
resample_vaes = gr.Dropdown(label='SD VAE', visible=True, value=vaes[0], choices=vaes) |
|
elem += resample_vaes |
|
refresh_resample_vaes = ui_components.ToolButton(value='π', visible=True, interactive=True) |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
methods = ['txt2img-1pass', 'txt2img-2pass', 'img2img-1pass'] |
|
elem += gr.Dropdown(label='Resample method', visible=True, value=methods[0], choices=methods) |
|
with gr.Column(): |
|
dd_resample_filter = gr.Dropdown(label='Resample filter', visible=True, value=filter.filters[0], choices=filter.filters) |
|
elem += dd_resample_filter |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Resample prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Resample negative prompt') |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
asamplers = [constants.sampler_default] |
|
asamplers.extend([x.name for x in shared.list_samplers()]) |
|
elem += gr.Dropdown(label='Sampling method', visible=True, value=asamplers[0], choices=asamplers) |
|
with gr.Column(min_width=100): |
|
upscalers = [constants.fast_upscaler] |
|
upscalers.extend([x.name for x in shared.sd_upscalers]) |
|
elem += gr.Dropdown(label='Upscaler', visible=True, value=upscalers[0], choices=upscalers) |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Resample Sampling Steps', elem_id='bmab_resample_steps') |
|
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='Resample CFG Scale', elem_id='bmab_resample_cfg_scale') |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Resample Denoising Strength', elem_id='bmab_resample_denoising') |
|
elem += gr.Slider(minimum=0.0, maximum=2, value=0.5, step=0.05, label='Resample strength', elem_id='bmab_resample_cn_strength') |
|
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label='Resample begin', elem_id='bmab_resample_cn_begin') |
|
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.01, label='Resample end', elem_id='bmab_resample_cn_end') |
|
with gr.Tab('Pretraining', id='bmab_pretraining', elem_id='bmab_pretraining_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable pretraining detailer', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable pretraining before hires.fix', value=False) |
|
with gr.Column(min_width=100): |
|
with gr.Row(): |
|
models = ['Select Model'] |
|
models.extend(util.list_pretraining_models()) |
|
pretraining_models = gr.Dropdown(label='Pretraining Model', visible=True, value=models[0], choices=models, elem_id='bmab_pretraining_models') |
|
elem += pretraining_models |
|
refresh_pretraining_models = ui_components.ToolButton(value='π', visible=True, interactive=True) |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Pretraining prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Pretraining negative prompt') |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
asamplers = [constants.sampler_default] |
|
asamplers.extend([x.name for x in shared.list_samplers()]) |
|
elem += gr.Dropdown(label='Sampling method', visible=True, value=asamplers[0], choices=asamplers) |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Pretraining sampling steps', elem_id='bmab_pretraining_steps') |
|
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='Pretraining CFG scale', elem_id='bmab_pretraining_cfg_scale') |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Pretraining denoising Strength', elem_id='bmab_pretraining_denoising') |
|
elem += gr.Slider(minimum=0, maximum=128, value=4, step=1, label='Pretraining dilation', elem_id='bmab_pretraining_dilation') |
|
elem += gr.Slider(minimum=0.1, maximum=1, value=0.35, step=0.01, label='Pretraining box threshold', elem_id='bmab_pretraining_box_threshold') |
|
with gr.Tab('Edge', elem_id='bmab_edge_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable edge enhancement', value=False) |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=1, maximum=255, value=50, step=1, label='Edge low threshold') |
|
elem += gr.Slider(minimum=1, maximum=255, value=200, step=1, label='Edge high threshold') |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.5, step=0.05, label='Edge strength') |
|
gr.Markdown('') |
|
with gr.Tab('Resize', elem_id='bmab_preprocess_resize_tab'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable resize (intermediate)', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Resized by person', value=True) |
|
with gr.Row(): |
|
gr.HTML(constants.resize_description) |
|
with gr.Row(): |
|
with gr.Column(): |
|
methods = ['stretching', 'inpaint', 'inpaint+lama', 'inpaint_only', 'inpaint_only+lama'] |
|
elem += gr.Dropdown(label='Method', visible=True, value=methods[0], choices=methods) |
|
with gr.Column(): |
|
align = [x for x in util.alignment.keys()] |
|
elem += gr.Dropdown(label='Alignment', visible=True, value=align[4], choices=align) |
|
with gr.Row(): |
|
with gr.Column(): |
|
dd_resize_filter = gr.Dropdown(label='Resize filter', visible=True, value=filter.filters[0], choices=filter.filters) |
|
elem += dd_resize_filter |
|
with gr.Column(): |
|
gr.Markdown('') |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=0.10, maximum=0.95, value=0.85, step=0.01, label='Resize by person intermediate') |
|
with gr.Row(): |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Denoising Strength for inpaint and inpaint+lama', elem_id='bmab_resize_intermediate_denoising') |
|
with gr.Tab('Refiner', id='bmab_refiner', elem_id='bmab_refiner_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable refiner', value=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
checkpoints = [constants.checkpoint_default] |
|
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()]) |
|
refiner_models = gr.Dropdown(label='CheckPoint', visible=True, value=checkpoints[0], choices=checkpoints) |
|
elem += refiner_models |
|
refresh_refiner_models = ui_components.ToolButton(value='π', visible=True, interactive=True) |
|
with gr.Column(): |
|
gr.Markdown('') |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Use this checkpoint for detailing(Face, Person, Hand)', value=True) |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt') |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
asamplers = [constants.sampler_default] |
|
asamplers.extend([x.name for x in shared.list_samplers()]) |
|
elem += gr.Dropdown(label='Sampling method', visible=True, value=asamplers[0], choices=asamplers) |
|
with gr.Column(min_width=100): |
|
upscalers = [constants.fast_upscaler] |
|
upscalers.extend([x.name for x in shared.sd_upscalers]) |
|
elem += gr.Dropdown(label='Upscaler', visible=True, value=upscalers[0], choices=upscalers) |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Refiner Sampling Steps', elem_id='bmab_refiner_steps') |
|
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='Refiner CFG Scale', elem_id='bmab_refiner_cfg_scale') |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label='Refiner Denoising Strength', elem_id='bmab_refiner_denoising') |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=0, maximum=4, value=1, step=0.1, label='Refiner Scale', elem_id='bmab_refiner_scale') |
|
elem += gr.Slider(minimum=0, maximum=2048, value=0, step=1, label='Refiner Width', elem_id='bmab_refiner_width') |
|
elem += gr.Slider(minimum=0, maximum=2048, value=0, step=1, label='Refiner Height', elem_id='bmab_refiner_height') |
|
with gr.Accordion(f'BMAB', open=False): |
|
with gr.Row(): |
|
with gr.Tabs(elem_id='bmab_tabs'): |
|
with gr.Tab('Basic', elem_id='bmab_basic_tabs'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.05, label='Contrast') |
|
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.05, label='Brightness') |
|
elem += gr.Slider(minimum=-5, maximum=5, value=1, step=0.1, label='Sharpeness') |
|
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.01, label='Color') |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=-2000, maximum=+2000, value=0, step=1, label='Color temperature') |
|
elem += gr.Slider(minimum=0, maximum=1, value=0, step=0.05, label='Noise alpha') |
|
elem += gr.Slider(minimum=0, maximum=1, value=0, step=0.05, label='Noise alpha at final stage') |
|
with gr.Tab('Imaging', elem_id='bmab_imaging_tabs'): |
|
with gr.Row(): |
|
elem += gr.Image(source='upload', type='pil') |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Blend enabled', value=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=0, maximum=1, value=1, step=0.05, label='Blend alpha') |
|
with gr.Column(): |
|
gr.Markdown('') |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable detect', value=False) |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='1girl', visible=True, value='', label='Prompt') |
|
with gr.Tab('Person', elem_id='bmab_person_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable person detailing for landscape', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable best quality (EXPERIMENTAL, Use more GPU)', value=False) |
|
elem += gr.Checkbox(label='Force upscale ratio 1:1 without area limit', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Block over-scaled image', value=True) |
|
elem += gr.Checkbox(label='Auto Upscale if Block over-scaled image enabled', value=True) |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=0.1, maximum=8, value=4, step=0.01, label='Upscale Ratio') |
|
elem += gr.Slider(minimum=0, maximum=20, value=3, step=1, label='Dilation mask') |
|
elem += gr.Slider(minimum=0.01, maximum=1, value=0.1, step=0.01, label='Large person area limit') |
|
elem += gr.Slider(minimum=0, maximum=20, value=1, step=1, label='Limit') |
|
elem += gr.Slider(minimum=0, maximum=2, value=1, step=0.01, visible=shared.opts.data.get('bmab_test_function', False), label='Background color (HIDDEN)') |
|
elem += gr.Slider(minimum=0, maximum=30, value=0, step=1, visible=shared.opts.data.get('bmab_test_function', False), label='Background blur (HIDDEN)') |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label='Denoising Strength') |
|
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='CFG Scale') |
|
gr.Markdown('') |
|
with gr.Tab('Face', elem_id='bmab_face_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable face detailing', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable face detailing before hires.fix', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Disable extra networks in prompt (LORA, Hypernetwork, ...)', value=False) |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Dropdown(label='Face detailing sort by', choices=['Score', 'Size', 'Left', 'Right', 'Center'], type='value', value='Score') |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=0, maximum=20, value=1, step=1, label='Limit') |
|
with gr.Tab('Face1', elem_id='bmab_face1_tabs'): |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt') |
|
with gr.Tab('Face2', elem_id='bmab_face2_tabs'): |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt') |
|
with gr.Tab('Face3', elem_id='bmab_face3_tabs'): |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt') |
|
with gr.Tab('Face4', elem_id='bmab_face4_tabs'): |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt') |
|
with gr.Tab('Face5', elem_id='bmab_face5_tabs'): |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt') |
|
with gr.Row(): |
|
with gr.Tab('Parameters', elem_id='bmab_parameter_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Overide Parameters', value=False) |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=64, maximum=2048, value=512, step=8, label='Width') |
|
elem += gr.Slider(minimum=64, maximum=2048, value=512, step=8, label='Height') |
|
with gr.Column(min_width=100): |
|
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='CFG Scale') |
|
elem += gr.Slider(minimum=1, maximum=150, value=20, step=1, label='Steps') |
|
elem += gr.Slider(minimum=0, maximum=64, value=4, step=1, label='Mask Blur') |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
asamplers = [constants.sampler_default] |
|
asamplers.extend([x.name for x in shared.list_samplers()]) |
|
elem += gr.Dropdown(label='Sampler', visible=True, value=asamplers[0], choices=asamplers) |
|
inpaint_area = gr.Radio(label='Inpaint area', choices=['Whole picture', 'Only masked'], type='value', value='Only masked') |
|
elem += inpaint_area |
|
elem += gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32) |
|
choices = detectors.list_face_detectors() |
|
elem += gr.Dropdown(label='Detection Model', choices=choices, type='value', value=choices[0]) |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label='Face Denoising Strength', elem_id='bmab_face_denoising_strength') |
|
elem += gr.Slider(minimum=0, maximum=64, value=4, step=1, label='Face Dilation', elem_id='bmab_face_dilation') |
|
elem += gr.Slider(minimum=0.1, maximum=1, value=0.35, step=0.01, label='Face Box threshold') |
|
elem += gr.Checkbox(label='Skip face detailing by area', value=False) |
|
elem += gr.Slider(minimum=0.0, maximum=3.0, value=0.26, step=0.01, label='Face area (MegaPixel)') |
|
with gr.Tab('Hand', elem_id='bmab_hand_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable hand detailing (EXPERIMENTAL)', value=False) |
|
elem += gr.Checkbox(label='Block over-scaled image', value=True) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable best quality (EXPERIMENTAL, Use more GPU)', value=False) |
|
with gr.Row(): |
|
elem += gr.Dropdown(label='Method', visible=True, interactive=True, value='subframe', choices=['subframe', 'each hand', 'inpaint each hand', 'at once']) |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='prompt. if empty, use main prompt', lines=3, visible=True, value='', label='Prompt') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='negative prompt. if empty, use main negative prompt', lines=3, visible=True, value='', label='Negative Prompt') |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label='Denoising Strength') |
|
elem += gr.Slider(minimum=1, maximum=30, value=7, step=0.5, label='CFG Scale') |
|
elem += gr.Checkbox(label='Auto Upscale if Block over-scaled image enabled', value=True) |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=1, maximum=4, value=2, step=0.01, label='Upscale Ratio') |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.3, step=0.01, label='Box Threshold') |
|
elem += gr.Slider(minimum=0, maximum=0.3, value=0.1, step=0.01, label='Box Dilation') |
|
with gr.Row(): |
|
inpaint_area = gr.Radio(label='Inpaint area', choices=['Whole picture', 'Only masked'], type='value', value='Whole picture') |
|
elem += inpaint_area |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32) |
|
with gr.Column(): |
|
gr.Markdown('') |
|
with gr.Row(): |
|
elem += gr.Textbox(placeholder='Additional parameter for advanced user', visible=True, value='', label='Additional Parameter') |
|
with gr.Tab('ControlNet', elem_id='bmab_controlnet_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable ControlNet access', value=False) |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Process with BMAB refiner', value=False) |
|
with gr.Row(): |
|
with gr.Tab('Noise', elem_id='bmab_cn_noise_tabs'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable noise', value=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=0.0, maximum=2, value=0.4, step=0.05, elem_id='bmab_cn_noise', label='Noise strength') |
|
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, elem_id='bmab_cn_noise_begin', label='Noise begin') |
|
elem += gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.01, elem_id='bmab_cn_noise_end', label='Noise end') |
|
with gr.Column(): |
|
gr.Markdown('') |
|
with gr.Accordion(f'BMAB Postprocessor', open=False): |
|
with gr.Row(): |
|
with gr.Tab('Resize by person', elem_id='bmab_postprocess_resize_tab'): |
|
with gr.Row(): |
|
elem += gr.Checkbox(label='Enable resize by person', value=False) |
|
mode = ['Inpaint', 'ControlNet inpaint+lama'] |
|
elem += gr.Dropdown(label='Mode', visible=True, value=mode[0], choices=mode) |
|
with gr.Row(): |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=0.15, maximum=0.95, value=0.15, step=0.01, label='Resize by person') |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=0, maximum=1, value=0.6, step=0.01, label='Denoising Strength for Inpaint, ControlNet') |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown('') |
|
with gr.Column(): |
|
elem += gr.Slider(minimum=4, maximum=128, value=30, step=1, label='Mask Dilation') |
|
with gr.Tab('Upscale', elem_id='bmab_postprocess_upscale_tab'): |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
elem += gr.Checkbox(label='Enable upscale at final stage', value=False) |
|
elem += gr.Checkbox(label='Detailing after upscale', value=True) |
|
with gr.Column(min_width=100): |
|
gr.Markdown('') |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
upscalers = [x.name for x in shared.sd_upscalers] |
|
elem += gr.Dropdown(label='Upscaler', visible=True, value=upscalers[0], choices=upscalers) |
|
elem += gr.Slider(minimum=1, maximum=4, value=1.5, step=0.1, label='Upscale ratio') |
|
with gr.Tab('Filter', id='bmab_final_filter', elem_id='bmab_final_filter_tab'): |
|
with gr.Row(): |
|
dd_final_filter = gr.Dropdown(label='Final filter', visible=True, value=filter.filters[0], choices=filter.filters) |
|
elem += dd_final_filter |
|
with gr.Accordion(f'BMAB Config, Preset, Installer', open=False): |
|
with gr.Row(): |
|
configs = parameters.Parameters().list_config() |
|
config = '' if not configs else configs[0] |
|
with gr.Tab('Configuration', elem_id='bmab_configuration_tabs'): |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
with gr.Row(): |
|
config_dd = gr.Dropdown(label='Configuration', visible=True, interactive=True, allow_custom_value=True, value=config, choices=configs) |
|
elem += config_dd |
|
load_btn = ui_components.ToolButton('β¬οΈ', visible=True, interactive=True, tooltip='load configuration', elem_id='bmab_load_configuration') |
|
save_btn = ui_components.ToolButton('β¬οΈ', visible=True, interactive=True, tooltip='save configuration', elem_id='bmab_save_configuration') |
|
reset_btn = ui_components.ToolButton('π', visible=True, interactive=True, tooltip='reset to default', elem_id='bmab_reset_configuration') |
|
with gr.Column(scale=1): |
|
gr.Markdown('') |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
btn_reload_filter = gr.Button('reload filter', visible=True, interactive=True, elem_id='bmab_reload_filter') |
|
with gr.Column(scale=1): |
|
gr.Markdown('') |
|
with gr.Column(scale=1): |
|
gr.Markdown('') |
|
with gr.Column(scale=1): |
|
gr.Markdown('') |
|
with gr.Tab('Preset', elem_id='bmab_configuration_tabs'): |
|
with gr.Row(): |
|
with gr.Column(min_width=100): |
|
gr.Markdown('Preset Loader : preset override UI configuration.') |
|
with gr.Row(): |
|
presets = parameters.Parameters().list_preset() |
|
with gr.Column(min_width=100): |
|
with gr.Row(): |
|
preset_dd = gr.Dropdown(label='Preset', visible=True, interactive=True, allow_custom_value=True, value=presets[0], choices=presets) |
|
elem += preset_dd |
|
refresh_btn = ui_components.ToolButton('π', visible=True, interactive=True, tooltip='refresh preset', elem_id='bmab_preset_refresh') |
|
with gr.Tab('Toy', elem_id='bmab_toy_tabs'): |
|
with gr.Row(): |
|
merge_result = gr.Markdown('Result here') |
|
with gr.Row(): |
|
random_checkpoint = gr.Button('Merge Random Checkpoint', visible=True, interactive=True, elem_id='bmab_merge_random_checkpoint') |
|
with gr.Tab('Installer', elem_id='bmab_install_tabs'): |
|
with gr.Row(): |
|
pkgs = ['GroundingDINO'] |
|
dd_pkg = gr.Dropdown(label='Package', visible=True, value=pkgs[0], choices=pkgs) |
|
btn_install = ui_components.ToolButton('π', visible=True, interactive=True, tooltip='Install package', elem_id='bmab_btn_install') |
|
with gr.Row(): |
|
markdown_install = gr.Markdown('') |
|
with gr.Accordion(f'BMAB Testroom', open=False, visible=shared.opts.data.get('bmab_for_developer', False)): |
|
with gr.Row(): |
|
gallery = gr.Gallery(label='Images', value=[], elem_id='bmab_testroom_gallery') |
|
result_image = gr.Image(elem_id='bmab_result_image') |
|
with gr.Row(): |
|
btn_fetch_images = ui_components.ToolButton('π', visible=True, interactive=True, tooltip='fetch images', elem_id='bmab_fetch_images') |
|
btn_process_pipeline = ui_components.ToolButton('βΆοΈ', visible=True, interactive=True, tooltip='fetch images', elem_id='bmab_fetch_images') |
|
|
|
gr.Markdown(f'<div style="text-align: right; vertical-align: bottom"><span style="color: green">{bmab_version}</span></div>') |
|
|
|
def load_config(*args): |
|
name = args[0] |
|
ret = parameters.Parameters().load_config(name) |
|
return ret |
|
|
|
def save_config(*args): |
|
name = parameters.Parameters().get_save_config_name(args) |
|
parameters.Parameters().save_config(args) |
|
return { |
|
config_dd: { |
|
'choices': parameters.Parameters().list_config(), |
|
'value': name, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def reset_config(*args): |
|
return parameters.Parameters().get_default() |
|
|
|
def refresh_preset(*args): |
|
return { |
|
preset_dd: { |
|
'choices': parameters.Parameters().list_preset(), |
|
'value': 'None', |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def hit_refiner_model(value, *args): |
|
checkpoints = [constants.checkpoint_default] |
|
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()]) |
|
if value not in checkpoints: |
|
value = checkpoints[0] |
|
return { |
|
refiner_models: { |
|
'choices': checkpoints, |
|
'value': value, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def hit_pretraining_model(value, *args): |
|
models = ['Select Model'] |
|
models.extend(util.list_pretraining_models()) |
|
if value not in models: |
|
value = models[0] |
|
return { |
|
pretraining_models: { |
|
'choices': models, |
|
'value': value, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def hit_resample_model(value, *args): |
|
checkpoints = [constants.checkpoint_default] |
|
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()]) |
|
if value not in checkpoints: |
|
value = checkpoints[0] |
|
return { |
|
resample_models: { |
|
'choices': checkpoints, |
|
'value': value, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def hit_resample_vae(value, *args): |
|
vaes = [constants.vae_default] |
|
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()]) |
|
if value not in vaes: |
|
value = vaes[0] |
|
return { |
|
resample_vaes: { |
|
'choices': vaes, |
|
'value': value, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def hit_checkpoint_model(value, *args): |
|
checkpoints = [constants.checkpoint_default] |
|
checkpoints.extend([str(x) for x in sd_models.checkpoints_list.keys()]) |
|
if value not in checkpoints: |
|
value = checkpoints[0] |
|
return { |
|
checkpoint_models: { |
|
'choices': checkpoints, |
|
'value': value, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def hit_vae_models(value, *args): |
|
vaes = [constants.vae_default] |
|
vaes.extend([str(x) for x in sd_vae.vae_dict.keys()]) |
|
if value not in vaes: |
|
value = vaes[0] |
|
return { |
|
vaes_models: { |
|
'choices': vaes, |
|
'value': value, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def merge_random_checkpoint(*args): |
|
def find_random(k, f): |
|
for v in k: |
|
if v.startswith(f): |
|
return v |
|
|
|
result = '' |
|
checkpoints = [str(x) for x in sd_models.checkpoints_list.keys()] |
|
target = random.choices(checkpoints, k=3) |
|
multiplier = random.randrange(10, 90, 1) / 100 |
|
index = random.randrange(0x10000000, 0xFFFFFFFF, 1) |
|
output = f'bmab_random_{format(index, "08X")}' |
|
extras.run_modelmerger(None, target[0], target[1], target[2], 'Weighted sum', multiplier, False, output, 'safetensors', 0, None, '', True, True, True, '{}') |
|
result += f'{output}.safetensors generated<br>' |
|
for x in range(1, random.randrange(0, 5, 1)): |
|
checkpoints = [str(x) for x in sd_models.checkpoints_list.keys()] |
|
br = find_random(checkpoints, f'{output}.safetensors') |
|
if br is None: |
|
return |
|
index = random.randrange(0x10000000, 0xFFFFFFFF, 1) |
|
output = f'bmab_random_{format(index, "08X")}' |
|
target = random.choices(checkpoints, k=2) |
|
multiplier = random.randrange(10, 90, 1) / 100 |
|
extras.run_modelmerger(None, br, target[0], target[1], 'Weighted sum', multiplier, False, output, 'safetensors', 0, None, '', True, True, True, '{}') |
|
result += f'{output}.safetensors generated<br>' |
|
debug_print('done') |
|
return { |
|
merge_result: { |
|
'value': result, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def fetch_images(*args): |
|
global gallery_select_index |
|
gallery_select_index = 0 |
|
return { |
|
gallery: { |
|
'value': final_images, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def process_pipeline(*args): |
|
config, a = parameters.parse_args(args) |
|
preview = final_images[gallery_select_index] |
|
p = last_process |
|
ctx = context.Context.newContext(bmab_script, p, a, gallery_select_index) |
|
preview = pipeline.process(ctx, preview) |
|
images.save_image( |
|
preview, p.outpath_samples, '', |
|
p.all_seeds[gallery_select_index], p.all_prompts[gallery_select_index], |
|
shared.opts.samples_format, p=p, suffix="-testroom") |
|
return { |
|
result_image: { |
|
'value': preview, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def reload_filter(f1, f2, f3, f4, f5, *args): |
|
filter.reload_filters() |
|
return { |
|
dd_hiresfix_filter1: { |
|
'choices': filter.filters, |
|
'value': f1, |
|
'__type__': 'update' |
|
}, |
|
dd_hiresfix_filter2: { |
|
'choices': filter.filters, |
|
'value': f2, |
|
'__type__': 'update' |
|
}, |
|
dd_resample_filter: { |
|
'choices': filter.filters, |
|
'value': f3, |
|
'__type__': 'update' |
|
}, |
|
dd_resize_filter: { |
|
'choices': filter.filters, |
|
'value': f4, |
|
'__type__': 'update' |
|
}, |
|
dd_final_filter: { |
|
'choices': filter.filters, |
|
'value': f5, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def image_selected(data: gr.SelectData, *args): |
|
debug_print(data.index) |
|
global gallery_select_index |
|
gallery_select_index = data.index |
|
|
|
def hit_install(*args): |
|
pkg_name = args[0] |
|
if pkg_name == 'GroundingDINO': |
|
installer.install_groudingdino() |
|
msg = f'{pkg_name} installed' |
|
else: |
|
msg = 'Nothing installed.' |
|
return { |
|
markdown_install: { |
|
'value': msg, |
|
'__type__': 'update' |
|
} |
|
} |
|
|
|
def stop_process(*args): |
|
bscript.stop_generation = True |
|
gr.Info('Waiting for processing done.') |
|
|
|
load_btn.click(load_config, inputs=[config_dd], outputs=elem) |
|
save_btn.click(save_config, inputs=elem, outputs=[config_dd]) |
|
reset_btn.click(reset_config, outputs=elem) |
|
refresh_btn.click(refresh_preset, outputs=elem) |
|
refresh_refiner_models.click(hit_refiner_model, inputs=[refiner_models], outputs=[refiner_models]) |
|
refresh_pretraining_models.click(hit_pretraining_model, inputs=[pretraining_models], outputs=[pretraining_models]) |
|
refresh_resample_models.click(hit_resample_model, inputs=[resample_models], outputs=[resample_models]) |
|
refresh_resample_vaes.click(hit_resample_vae, inputs=[resample_vaes], outputs=[resample_vaes]) |
|
refresh_checkpoint_models.click(hit_checkpoint_model, inputs=[checkpoint_models], outputs=[checkpoint_models]) |
|
refresh_vae_models.click(hit_vae_models, inputs=[vaes_models], outputs=[vaes_models]) |
|
random_checkpoint.click(merge_random_checkpoint, outputs=[merge_result]) |
|
btn_fetch_images.click(fetch_images, outputs=[gallery]) |
|
btn_reload_filter.click(reload_filter, inputs=[dd_hiresfix_filter1, dd_hiresfix_filter2, dd_resample_filter, dd_resize_filter, dd_final_filter], outputs=[dd_hiresfix_filter1, dd_hiresfix_filter2, dd_resample_filter, dd_resize_filter, dd_final_filter]) |
|
|
|
btn_process_pipeline.click(process_pipeline, inputs=elem, outputs=[result_image]) |
|
gallery.select(image_selected, inputs=[gallery]) |
|
|
|
btn_install.click(hit_install, inputs=[dd_pkg], outputs=[markdown_install]) |
|
btn_stop.click(stop_process) |
|
|
|
return elem |
|
|
|
|
|
def on_ui_settings(): |
|
shared.opts.add_option('bmab_debug_print', shared.OptionInfo(False, 'Print debug message.', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_debug_logging', shared.OptionInfo(False, 'Enable developer logging.', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_show_extends', shared.OptionInfo(False, 'Show before processing image. (DO NOT ENABLE IN CLOUD)', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_test_function', shared.OptionInfo(False, 'Show Test Function', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_keep_original_setting', shared.OptionInfo(False, 'Keep original setting', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_save_image_before_process', shared.OptionInfo(False, 'Save image that before processing', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_save_image_after_process', shared.OptionInfo(False, 'Save image that after processing (some bugs)', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_for_developer', shared.OptionInfo(False, 'Show developer hidden function.', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_use_dino_predict', shared.OptionInfo(False, 'Use GroudingDINO for detecting hand. GroudingDINO should be installed manually.', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_max_detailing_element', shared.OptionInfo( |
|
default=0, label='Max Detailing Element', component=gr.Slider, component_args={'minimum': 0, 'maximum': 10, 'step': 1}, section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_detail_full', shared.OptionInfo(True, 'Allways use FULL, VAE type for encode when detail anything. (v1.6.0)', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_optimize_vram', shared.OptionInfo(default='None', label='Checkpoint for Person, Face, Hand', component=gr.Radio, component_args={'choices': ['None', 'low vram', 'med vram']}, section=('bmab', 'BMAB'))) |
|
mask_names = masking.list_mask_names() |
|
shared.opts.add_option('bmab_mask_model', shared.OptionInfo(default=mask_names[0], label='Masking model', component=gr.Radio, component_args={'choices': mask_names}, section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_use_specific_model', shared.OptionInfo(False, 'Use specific model', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_model', shared.OptionInfo(default='', label='Checkpoint for Person, Face, Hand', component=gr.Textbox, component_args='', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_cn_openpose', shared.OptionInfo(default='control_v11p_sd15_openpose_fp16 [73c2b67d]', label='ControlNet openpose model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_cn_lineart', shared.OptionInfo(default='control_v11p_sd15_lineart [43d4be0d]', label='ControlNet lineart model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_cn_inpaint', shared.OptionInfo(default='control_v11p_sd15_inpaint_fp16 [be8bc0ed]', label='ControlNet inpaint model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB'))) |
|
shared.opts.add_option('bmab_cn_tile_resample', shared.OptionInfo(default='control_v11f1e_sd15_tile_fp16 [3b860298]', label='ControlNet tile model', component=gr.Textbox, component_args='', section=('bmab', 'BMAB'))) |
|
|
|
|