First version of the your-model-name model and tokenizer.
Browse files- __init__.py +0 -0
- __pycache__/preprocess.cpython-37.pyc +0 -0
- main.py +60 -0
- preprocess.py +96 -0
- test-squad-trained/config.json +23 -0
- test-squad-trained/pytorch_model.bin +3 -0
- test-squad-trained/special_tokens_map.json +1 -0
- test-squad-trained/tokenizer_config.json +1 -0
- test-squad-trained/vocab.txt +0 -0
__init__.py
ADDED
File without changes
|
__pycache__/preprocess.cpython-37.pyc
ADDED
Binary file (3.56 kB). View file
|
|
main.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from preprocess import Model, SquadDataset
|
2 |
+
from transformers import DistilBertForQuestionAnswering
|
3 |
+
from torch.utils.data import DataLoader
|
4 |
+
from transformers import AdamW
|
5 |
+
import torch
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
data = Model()
|
9 |
+
train_contexts, train_questions, train_answers = data.ArrangeData("livecheckcontainer")
|
10 |
+
val_contexts, val_questions, val_answers = data.ArrangeData("livecheckcontainer")
|
11 |
+
print(train_answers)
|
12 |
+
|
13 |
+
train_answers, train_contexts = data.add_end_idx(train_answers, train_contexts)
|
14 |
+
val_answers, val_contexts = data.add_end_idx(val_answers, val_contexts)
|
15 |
+
|
16 |
+
train_encodings, val_encodings = data.Tokenizer(train_contexts, train_questions, val_contexts, val_questions)
|
17 |
+
|
18 |
+
train_encodings = data.add_token_positions(train_encodings, train_answers)
|
19 |
+
val_encodings = data.add_token_positions(val_encodings, val_answers)
|
20 |
+
|
21 |
+
train_dataset = SquadDataset(train_encodings)
|
22 |
+
val_dataset = SquadDataset(val_encodings)
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
|
27 |
+
|
28 |
+
|
29 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
30 |
+
|
31 |
+
model.to(device)
|
32 |
+
model.train()
|
33 |
+
|
34 |
+
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
35 |
+
|
36 |
+
optim = AdamW(model.parameters(), lr=5e-5)
|
37 |
+
|
38 |
+
for epoch in range(2):
|
39 |
+
print(epoch)
|
40 |
+
for batch in train_loader:
|
41 |
+
optim.zero_grad()
|
42 |
+
input_ids = batch['input_ids'].to(device)
|
43 |
+
attention_mask = batch['attention_mask'].to(device)
|
44 |
+
start_positions = batch['start_positions'].to(device)
|
45 |
+
end_positions = batch['end_positions'].to(device)
|
46 |
+
outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
|
47 |
+
loss = outputs[0]
|
48 |
+
loss.backward()
|
49 |
+
optim.step()
|
50 |
+
print("Done")
|
51 |
+
model.eval()
|
52 |
+
model.save_pretrained("test-squad-trained")
|
53 |
+
data.tokenizer.save_pretrained("test-squad-trained")
|
54 |
+
|
55 |
+
|
56 |
+
subprocess.call(["git", "add","--all"])
|
57 |
+
subprocess.call(["git", "status"])
|
58 |
+
subprocess.call(["git", "commit", "-m", "First version of the your-model-name model and tokenizer."])
|
59 |
+
subprocess.call(["git", "push"])
|
60 |
+
|
preprocess.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from os import close
|
3 |
+
from pathlib import Path
|
4 |
+
from azure.cosmos import CosmosClient, PartitionKey, exceptions
|
5 |
+
from transformers import DistilBertTokenizerFast
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
class Model:
|
10 |
+
|
11 |
+
def __init__(self) -> None:
|
12 |
+
self.endPoint = "https://productdevelopmentstorage.documents.azure.com:443/"
|
13 |
+
self.primaryKey = "nVds9dPOkPuKu8RyWqigA1DIah4SVZtl1DIM0zDuRKd95an04QC0qv9TQIgrdtgluZo7Z0HXACFQgKgOQEAx1g=="
|
14 |
+
self.client = CosmosClient(self.endPoint, self.primaryKey)
|
15 |
+
self.tokenizer = None
|
16 |
+
|
17 |
+
def GetData(self, type):
|
18 |
+
database = self.client.get_database_client("squadstorage")
|
19 |
+
container = database.get_container_client(type)
|
20 |
+
item_list = list(container.read_all_items(max_item_count=10))
|
21 |
+
return item_list
|
22 |
+
|
23 |
+
def ArrangeData(self, type):
|
24 |
+
squad_dict = self.GetData(type)
|
25 |
+
|
26 |
+
contexts = []
|
27 |
+
questions = []
|
28 |
+
answers = []
|
29 |
+
|
30 |
+
for i in squad_dict:
|
31 |
+
contexts.append(i["context"])
|
32 |
+
questions.append(i["question"])
|
33 |
+
answers.append(i["answers"])
|
34 |
+
|
35 |
+
return contexts, questions, answers
|
36 |
+
|
37 |
+
def add_end_idx(self, answers, contexts):
|
38 |
+
for answer, context in zip(answers, contexts):
|
39 |
+
gold_text = answer['text'][0]
|
40 |
+
start_idx = answer['answer_start'][0]
|
41 |
+
end_idx = start_idx + len(gold_text)
|
42 |
+
|
43 |
+
if context[start_idx:end_idx] == gold_text:
|
44 |
+
answer['answer_end'] = end_idx
|
45 |
+
elif context[start_idx-1:end_idx-1] == gold_text:
|
46 |
+
answer['answer_start'] = start_idx - 1
|
47 |
+
answer['answer_end'] = end_idx - 1 # When the gold label is off by one character
|
48 |
+
elif context[start_idx-2:end_idx-2] == gold_text:
|
49 |
+
answer['answer_start'] = start_idx - 2
|
50 |
+
answer['answer_end'] = end_idx - 2 # When the gold label is off by two characters
|
51 |
+
|
52 |
+
return answers, contexts
|
53 |
+
|
54 |
+
def Tokenizer(self, train_contexts, train_questions, val_contexts, val_questions):
|
55 |
+
self.tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
|
56 |
+
|
57 |
+
train_encodings = self.tokenizer(train_contexts, train_questions, truncation=True, padding=True)
|
58 |
+
val_encodings = self.tokenizer(val_contexts, val_questions, truncation=True, padding=True)
|
59 |
+
|
60 |
+
return train_encodings, val_encodings
|
61 |
+
|
62 |
+
|
63 |
+
def add_token_positions(self, encodings, answers):
|
64 |
+
start_positions = []
|
65 |
+
end_positions = []
|
66 |
+
for i in range(len(answers)):
|
67 |
+
start_positions.append(encodings.char_to_token(i, answers[i]['answer_start'][0]))
|
68 |
+
end_positions.append(encodings.char_to_token(i, answers[i]['answer_end'] - 1))
|
69 |
+
|
70 |
+
# if start position is None, the answer passage has been truncated
|
71 |
+
|
72 |
+
if start_positions[-1] is None:
|
73 |
+
start_positions[-1] = self.tokenizer.model_max_length
|
74 |
+
if end_positions[-1] is None:
|
75 |
+
end_positions[-1] = self.tokenizer.model_max_length
|
76 |
+
|
77 |
+
encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
|
78 |
+
return encodings
|
79 |
+
|
80 |
+
# train_contexts, train_questions, train_answers = read_squad('squad/train-v2.0.json')
|
81 |
+
# val_contexts, val_questions, val_answers = read_squad('squad/dev-v2.0.json')
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
class SquadDataset(torch.utils.data.Dataset):
|
88 |
+
def __init__(self, encodings):
|
89 |
+
self.encodings = encodings
|
90 |
+
|
91 |
+
def __getitem__(self, idx):
|
92 |
+
return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
93 |
+
|
94 |
+
def __len__(self):
|
95 |
+
return len(self.encodings.input_ids)
|
96 |
+
|
test-squad-trained/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForQuestionAnswering"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"transformers_version": "4.3.2",
|
22 |
+
"vocab_size": 30522
|
23 |
+
}
|
test-squad-trained/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:423cba4a34bfc72ad38bc33a07f81fd45f433c8e8f15383b8b35c95be8a1b26e
|
3 |
+
size 265498527
|
test-squad-trained/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
test-squad-trained/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
|
test-squad-trained/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|