File size: 2,031 Bytes
4c5b245 3f29f36 4c5b245 3f29f36 4c5b245 8904840 4c5b245 f9ff1db 4c5b245 3f29f36 4c5b245 8904840 4c5b245 8904840 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: dandelin/vilt-b32-mlm
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: vilt_finetuned_200
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vilt_finetuned_200
This model is a fine-tuned version of [dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 21.0818
- Accuracy: 0.02
- F1: 0.02
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----:|
| 4.1329 | 1.0 | 2678 | 9.9163 | 0.0 | 0.0 |
| 3.7352 | 2.0 | 5356 | 10.4438 | 0.0 | 0.0 |
| 2.1774 | 3.0 | 8034 | 11.5371 | 0.0 | 0.0 |
| 1.1338 | 4.0 | 10712 | 12.9686 | 0.0 | 0.0 |
| 0.6816 | 5.0 | 13390 | 15.4396 | 0.0 | 0.0 |
| 0.3725 | 6.0 | 16068 | 17.1792 | 0.01 | 0.01 |
| 0.1133 | 7.0 | 18746 | 18.8999 | 0.01 | 0.01 |
| 0.0494 | 8.0 | 21424 | 19.9610 | 0.01 | 0.01 |
| 0.0905 | 9.0 | 24102 | 20.6784 | 0.02 | 0.02 |
| 0.0749 | 10.0 | 26780 | 21.0818 | 0.02 | 0.02 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
|