update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- cord
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: layoutlmv3-finetuned-cord_100
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: cord
|
20 |
+
type: cord
|
21 |
+
args: cord
|
22 |
+
metrics:
|
23 |
+
- name: Precision
|
24 |
+
type: precision
|
25 |
+
value: 0.9174649963154016
|
26 |
+
- name: Recall
|
27 |
+
type: recall
|
28 |
+
value: 0.9318862275449101
|
29 |
+
- name: F1
|
30 |
+
type: f1
|
31 |
+
value: 0.9246193835870776
|
32 |
+
- name: Accuracy
|
33 |
+
type: accuracy
|
34 |
+
value: 0.9405772495755518
|
35 |
+
---
|
36 |
+
|
37 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
38 |
+
should probably proofread and complete it, then remove this comment. -->
|
39 |
+
|
40 |
+
# layoutlmv3-finetuned-cord_100
|
41 |
+
|
42 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord dataset.
|
43 |
+
It achieves the following results on the evaluation set:
|
44 |
+
- Loss: 0.2834
|
45 |
+
- Precision: 0.9175
|
46 |
+
- Recall: 0.9319
|
47 |
+
- F1: 0.9246
|
48 |
+
- Accuracy: 0.9406
|
49 |
+
|
50 |
+
## Model description
|
51 |
+
|
52 |
+
More information needed
|
53 |
+
|
54 |
+
## Intended uses & limitations
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Training and evaluation data
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
- learning_rate: 1e-05
|
68 |
+
- train_batch_size: 5
|
69 |
+
- eval_batch_size: 5
|
70 |
+
- seed: 42
|
71 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
+
- lr_scheduler_type: linear
|
73 |
+
- training_steps: 2500
|
74 |
+
|
75 |
+
### Training results
|
76 |
+
|
77 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
+
| No log | 4.17 | 250 | 1.0175 | 0.7358 | 0.7882 | 0.7611 | 0.8014 |
|
80 |
+
| 1.406 | 8.33 | 500 | 0.5646 | 0.8444 | 0.8735 | 0.8587 | 0.8671 |
|
81 |
+
| 1.406 | 12.5 | 750 | 0.3943 | 0.8950 | 0.9184 | 0.9065 | 0.9189 |
|
82 |
+
| 0.3467 | 16.67 | 1000 | 0.3379 | 0.9138 | 0.9289 | 0.9213 | 0.9291 |
|
83 |
+
| 0.3467 | 20.83 | 1250 | 0.2842 | 0.9189 | 0.9334 | 0.9261 | 0.9419 |
|
84 |
+
| 0.1484 | 25.0 | 1500 | 0.2822 | 0.9233 | 0.9371 | 0.9302 | 0.9427 |
|
85 |
+
| 0.1484 | 29.17 | 1750 | 0.2906 | 0.9168 | 0.9319 | 0.9243 | 0.9372 |
|
86 |
+
| 0.0825 | 33.33 | 2000 | 0.2922 | 0.9183 | 0.9334 | 0.9258 | 0.9410 |
|
87 |
+
| 0.0825 | 37.5 | 2250 | 0.2842 | 0.9154 | 0.9319 | 0.9236 | 0.9397 |
|
88 |
+
| 0.0596 | 41.67 | 2500 | 0.2834 | 0.9175 | 0.9319 | 0.9246 | 0.9406 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.20.1
|
94 |
+
- Pytorch 1.11.0
|
95 |
+
- Datasets 2.1.0
|
96 |
+
- Tokenizers 0.12.1
|