File size: 7,493 Bytes
7aa36eb
0e0f686
 
 
74478a0
 
 
7aa36eb
74478a0
 
 
 
 
 
 
 
 
 
f775f8b
74478a0
f775f8b
74478a0
 
 
 
 
 
 
 
 
 
 
 
 
f775f8b
77e4d25
 
74478a0
77e4d25
 
 
 
74478a0
77e4d25
 
74478a0
 
 
77e4d25
 
74478a0
77e4d25
74478a0
 
 
 
 
 
 
 
 
 
 
 
 
77e4d25
 
74478a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e4d25
 
 
 
74478a0
 
 
77e4d25
 
 
74478a0
 
77e4d25
 
 
 
 
 
74478a0
 
 
 
 
 
 
77e4d25
 
74478a0
 
77e4d25
 
 
74478a0
77e4d25
 
74478a0
 
 
 
 
 
 
 
 
 
 
 
 
77e4d25
 
74478a0
 
 
77e4d25
 
74478a0
 
 
 
 
 
 
 
 
 
 
 
77e4d25
 
 
 
74478a0
 
 
 
 
 
 
 
 
 
 
77e4d25
 
f775f8b
 
74478a0
 
 
 
f775f8b
 
 
 
 
74478a0
 
 
 
 
 
 
f775f8b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---

language: en
license: apache-2.0
datasets:
- bookcorpus
- wikipedia

---


# DistilBERT base model (uncased) for Interactive Fiction

[`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) finetuned on a dataset of Interactive
Fiction commands.

Details on the datasets can be found [here](https://github.com/aporporato/jericho-corpora).

The resulting model scored an accuracy of 0.976253 on the WordNet task test set.

## How to use the discriminator in `transformers`

```python

import tensorflow as tf

from transformers import TFAutoModelForSequenceClassification, AutoTokenizer



discriminator = TFAutoModelForSequenceClassification.from_pretrained("Aureliano/distilbert-base-uncased-if")

tokenizer = AutoTokenizer.from_pretrained("Aureliano/distilbert-base-uncased-if")



text = "get lamp"

encoded_input = tokenizer(text, return_tensors='tf')

output = discriminator(encoded_input)

prediction = tf.nn.softmax(output["logits"][0], -1)

label = discriminator.config.id2label[tf.math.argmax(prediction).numpy()]

print(text, ":", label)  # take.v.04 -> "get into one's hands, take physically"



```

## How to use the discriminator in `transformers` on a custom dataset

(Heavily based on: https://github.com/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb)



```python

import math

import numpy as np



import tensorflow as tf

from datasets import load_metric, Dataset, DatasetDict
from transformers import TFAutoModel, TFAutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, create_optimizer

from transformers.keras_callbacks import KerasMetricCallback

# This example shows how this model can be used:
#  you should finetune the model of your specific corpus if commands, bigger than this
dict_train = {

    "idx": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18",

            "19", "20"],

    "sentence": ["e", "get pen", "drop book", "x paper", "i", "south", "get paper", "drop the pen", "x book",

                 "inventory", "n", "get the book", "drop paper", "look at Pen", "inv", "g", "s", "get sandwich",

                 "drop sandwich", "x sandwich", "agin"],

    "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04",

              "drop.v.01", "examine.v.02", "inventory.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02",

              "inventory.v.01", "repeat.v.01", "travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "repeat.v.01"]

}

dict_val = {
    "idx": ["0", "1", "2", "3", "4", "5"],

    "sentence": ["w", "get shield", "drop sword", "x spikes", "i", "repeat"],

    "label": ["travel.v.01", "take.v.04", "drop.v.01", "examine.v.02", "inventory.v.01", "repeat.v.01"]

}


raw_train_dataset = Dataset.from_dict(dict_train)
raw_val_dataset = Dataset.from_dict(dict_val)
raw_dataset = DatasetDict()

raw_dataset["train"] = raw_train_dataset
raw_dataset["val"] = raw_val_dataset

raw_dataset = raw_dataset.class_encode_column("label")

print(raw_dataset)
print(raw_dataset["train"].features)

print(raw_dataset["val"].features)
print(raw_dataset["train"][1])

label2id = {}

id2label = {}

for i, l in enumerate(raw_dataset["train"].features["label"].names):
    label2id[l] = i

    id2label[i] = l


discriminator = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased",

                                                                     label2id=label2id,

                                                                     id2label=id2label)

discriminator.distilbert = TFAutoModel.from_pretrained("Aureliano/distilbert-base-uncased-if")
tokenizer = AutoTokenizer.from_pretrained("Aureliano/distilbert-base-uncased-if")



tokenize_function = lambda example: tokenizer(example["sentence"], truncation=True)

pre_tokenizer_columns = set(raw_dataset["train"].features)

encoded_dataset = raw_dataset.map(tokenize_function, batched=True)
tokenizer_columns = list(set(encoded_dataset["train"].features) - pre_tokenizer_columns)

data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")

batch_size = len(encoded_dataset["train"])
tf_train_dataset = encoded_dataset["train"].to_tf_dataset(

    columns=tokenizer_columns,
    label_cols=["labels"],

    shuffle=True,

    batch_size=batch_size,

    collate_fn=data_collator

)

tf_validation_dataset = encoded_dataset["val"].to_tf_dataset(

    columns=tokenizer_columns,

    label_cols=["labels"],

    shuffle=False,

    batch_size=batch_size,

    collate_fn=data_collator

)


loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

num_epochs = 20
batches_per_epoch = math.ceil(len(encoded_dataset["train"]) / batch_size)
total_train_steps = int(batches_per_epoch * num_epochs)



optimizer, schedule = create_optimizer(
    init_lr=2e-5, num_warmup_steps=total_train_steps // 5, num_train_steps=total_train_steps

)


metric = load_metric("accuracy")





def compute_metrics(eval_predictions):

    logits, labels = eval_predictions
    predictions = np.argmax(logits, axis=-1)

    return metric.compute(predictions=predictions, references=labels)



metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_dataset)
callbacks = [metric_callback]



discriminator.compile(optimizer=optimizer, loss=loss, metrics=["sparse_categorical_accuracy"])

discriminator.fit(

    tf_train_dataset,

    epochs=num_epochs,
    validation_data=tf_validation_dataset,

    callbacks=callbacks

)


print("Evaluate on test data")
results = discriminator.evaluate(tf_validation_dataset)
print("test loss, test acc:", results)

text = "i"
encoded_input = tokenizer(text, return_tensors='tf')
output = discriminator(encoded_input)

prediction = tf.nn.softmax(output["logits"][0], -1)

label = id2label[tf.math.argmax(prediction).numpy()]

print("\n", text, ":", label,

      "\n")  # ideally 'inventory.v.01' (-> "make or include in an itemized record or report"), but probably only with a better finetuning dataset



text = "get lamp"

encoded_input = tokenizer(text, return_tensors='tf')

output = discriminator(encoded_input)
prediction = tf.nn.softmax(output["logits"][0], -1)
label = id2label[tf.math.argmax(prediction).numpy()]
print("\n", text, ":", label,
      "\n")  # ideally 'take.v.04' (-> "get into one's hands, take physically"), but probably only with a better finetuning dataset


text = "w"
encoded_input = tokenizer(text, return_tensors='tf')
output = discriminator(encoded_input)

prediction = tf.nn.softmax(output["logits"][0], -1)

label = id2label[tf.math.argmax(prediction).numpy()]

print("\n", text, ":", label,

      "\n")  # ideally 'travel.v.01' (-> "change location; move, travel, or proceed, also metaphorically"), but probably only with a better finetuning dataset



```



## How to use in a Rasa pipeline



The model can integrated in a Rasa pipeline through

a [`LanguageModelFeaturizer`](https://rasa.com/docs/rasa/components#languagemodelfeaturizer)



```yaml

recipe: default.v1

language: en



pipeline:

  # See https://rasa.com/docs/rasa/tuning-your-model for more information.

    ...

    - name: "WhitespaceTokenizer"

    ...

    - name: LanguageModelFeaturizer

      model_name: "distilbert"
      model_weights: "Aureliano/distilbert-base-uncased-if"

    ...

```