--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-finetuned-Arxiv results: [] --- [Visualize in Weights & Biases](https://wandb.ai/cherguelainea/huggingface/runs/w1hr3bmb) # bert-finetuned-Arxiv This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2203 - F1: 0.8872 - Roc Auc: 0.9052 - Accuracy: 0.3438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.297 | 1.0 | 1563 | 0.2869 | 0.8483 | 0.8739 | 0.1142 | | 0.2389 | 2.0 | 3126 | 0.2440 | 0.8719 | 0.8933 | 0.1934 | | 0.2057 | 3.0 | 4689 | 0.2299 | 0.8791 | 0.8983 | 0.2795 | | 0.1747 | 4.0 | 6252 | 0.2223 | 0.8837 | 0.9021 | 0.3185 | | 0.1568 | 5.0 | 7815 | 0.2208 | 0.8867 | 0.9051 | 0.3281 | | 0.1419 | 6.0 | 9378 | 0.2203 | 0.8872 | 0.9052 | 0.3438 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1