BAAI
/

ldwang commited on
Commit
461a00d
1 Parent(s): 6ed3d24

Delete tokenization_qwen.py

Browse files
Files changed (1) hide show
  1. tokenization_qwen.py +0 -276
tokenization_qwen.py DELETED
@@ -1,276 +0,0 @@
1
- # Copyright (c) Alibaba Cloud.
2
- #
3
- # This source code is licensed under the license found in the
4
- # LICENSE file in the root directory of this source tree.
5
-
6
- """Tokenization classes for QWen."""
7
-
8
- import base64
9
- import logging
10
- import os
11
- import unicodedata
12
- from typing import Collection, Dict, List, Set, Tuple, Union
13
-
14
- import tiktoken
15
- from transformers import PreTrainedTokenizer, AddedToken
16
-
17
- logger = logging.getLogger(__name__)
18
-
19
-
20
- VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
-
22
- PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
- ENDOFTEXT = "<|endoftext|>"
24
- IMSTART = "<|im_start|>"
25
- IMEND = "<|im_end|>"
26
- # as the default behavior is changed to allow special tokens in
27
- # regular texts, the surface forms of special tokens need to be
28
- # as different as possible to minimize the impact
29
- EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
- # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
- SPECIAL_START_ID = 151643
32
- SPECIAL_TOKENS = tuple(
33
- enumerate(
34
- (
35
- (
36
- ENDOFTEXT,
37
- IMSTART,
38
- IMEND,
39
- )
40
- + EXTRAS
41
- ),
42
- start=SPECIAL_START_ID,
43
- )
44
- )
45
- SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
-
47
-
48
- def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
- with open(tiktoken_bpe_file, "rb") as f:
50
- contents = f.read()
51
- return {
52
- base64.b64decode(token): int(rank)
53
- for token, rank in (line.split() for line in contents.splitlines() if line)
54
- }
55
-
56
-
57
- class QWenTokenizer(PreTrainedTokenizer):
58
- """QWen tokenizer."""
59
-
60
- vocab_files_names = VOCAB_FILES_NAMES
61
-
62
- def __init__(
63
- self,
64
- vocab_file,
65
- errors="replace",
66
- extra_vocab_file=None,
67
- **kwargs,
68
- ):
69
- super().__init__(**kwargs)
70
-
71
- # how to handle errors in decoding UTF-8 byte sequences
72
- # use ignore if you are in streaming inference
73
- self.errors = errors
74
-
75
- self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
- self.special_tokens = {
77
- token: index
78
- for index, token in SPECIAL_TOKENS
79
- }
80
-
81
- # try load extra vocab from file
82
- if extra_vocab_file is not None:
83
- used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
- extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
- for token, index in extra_mergeable_ranks.items():
86
- if token in self.mergeable_ranks:
87
- logger.info(f"extra token {token} exists, skipping")
88
- continue
89
- if index in used_ids:
90
- logger.info(f'the index {index} for extra token {token} exists, skipping')
91
- continue
92
- self.mergeable_ranks[token] = index
93
- # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
-
95
- enc = tiktoken.Encoding(
96
- "Qwen",
97
- pat_str=PAT_STR,
98
- mergeable_ranks=self.mergeable_ranks,
99
- special_tokens=self.special_tokens,
100
- )
101
- assert (
102
- len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
- ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
-
105
- self.decoder = {
106
- v: k for k, v in self.mergeable_ranks.items()
107
- } # type: dict[int, bytes|str]
108
- self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
-
110
- self.tokenizer = enc # type: tiktoken.Encoding
111
-
112
- self.eod_id = self.tokenizer.eot_token
113
- self.im_start_id = self.special_tokens[IMSTART]
114
- self.im_end_id = self.special_tokens[IMEND]
115
-
116
- def __getstate__(self):
117
- # for pickle lovers
118
- state = self.__dict__.copy()
119
- del state["tokenizer"]
120
- return state
121
-
122
- def __setstate__(self, state):
123
- # tokenizer is not python native; don't pass it; rebuild it
124
- self.__dict__.update(state)
125
- enc = tiktoken.Encoding(
126
- "Qwen",
127
- pat_str=PAT_STR,
128
- mergeable_ranks=self.mergeable_ranks,
129
- special_tokens=self.special_tokens,
130
- )
131
- self.tokenizer = enc
132
-
133
- def __len__(self) -> int:
134
- return self.tokenizer.n_vocab
135
-
136
- def get_vocab(self) -> Dict[bytes, int]:
137
- return self.mergeable_ranks
138
-
139
- def convert_tokens_to_ids(
140
- self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
- ) -> List[int]:
142
- ids = []
143
- if isinstance(tokens, (str, bytes)):
144
- if tokens in self.special_tokens:
145
- return self.special_tokens[tokens]
146
- else:
147
- return self.mergeable_ranks.get(tokens)
148
- for token in tokens:
149
- if token in self.special_tokens:
150
- ids.append(self.special_tokens[token])
151
- else:
152
- ids.append(self.mergeable_ranks.get(token))
153
- return ids
154
-
155
- def _add_tokens(
156
- self,
157
- new_tokens: Union[List[str], List[AddedToken]],
158
- special_tokens: bool = False,
159
- ) -> int:
160
- if not special_tokens and new_tokens:
161
- raise ValueError("Adding regular tokens is not supported")
162
- for token in new_tokens:
163
- surface_form = token.content if isinstance(token, AddedToken) else token
164
- if surface_form not in SPECIAL_TOKENS_SET:
165
- raise ValueError("Adding unknown special tokens is not supported")
166
- return 0
167
-
168
- def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
- """
170
- Save only the vocabulary of the tokenizer (vocabulary).
171
-
172
- Returns:
173
- `Tuple(str)`: Paths to the files saved.
174
- """
175
- file_path = os.path.join(save_directory, "qwen.tiktoken")
176
- with open(file_path, "w", encoding="utf8") as w:
177
- for k, v in self.mergeable_ranks.items():
178
- line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
- w.write(line)
180
- return (file_path,)
181
-
182
- def tokenize(
183
- self,
184
- text: str,
185
- allowed_special: Union[Set, str] = "all",
186
- disallowed_special: Union[Collection, str] = (),
187
- **kwargs,
188
- ) -> List[Union[bytes, str]]:
189
- """
190
- Converts a string in a sequence of tokens.
191
-
192
- Args:
193
- text (`str`):
194
- The sequence to be encoded.
195
- allowed_special (`Literal["all"]` or `set`):
196
- The surface forms of the tokens to be encoded as special tokens in regular texts.
197
- Default to "all".
198
- disallowed_special (`Literal["all"]` or `Collection`):
199
- The surface forms of the tokens that should not be in regular texts and trigger errors.
200
- Default to an empty tuple.
201
-
202
- kwargs (additional keyword arguments, *optional*):
203
- Will be passed to the underlying model specific encode method.
204
-
205
- Returns:
206
- `List[bytes|str]`: The list of tokens.
207
- """
208
- tokens = []
209
- text = unicodedata.normalize("NFC", text)
210
-
211
- # this implementation takes a detour: text -> token id -> token surface forms
212
- for t in self.tokenizer.encode(
213
- text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
- ):
215
- tokens.append(self.decoder[t])
216
- return tokens
217
-
218
- def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
- """
220
- Converts a sequence of tokens in a single string.
221
- """
222
- text = ""
223
- temp = b""
224
- for t in tokens:
225
- if isinstance(t, str):
226
- if temp:
227
- text += temp.decode("utf-8", errors=self.errors)
228
- temp = b""
229
- text += t
230
- elif isinstance(t, bytes):
231
- temp += t
232
- else:
233
- raise TypeError("token should only be of type types or str")
234
- if temp:
235
- text += temp.decode("utf-8", errors=self.errors)
236
- return text
237
-
238
- @property
239
- def vocab_size(self):
240
- return self.tokenizer.n_vocab
241
-
242
- def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
- """Converts an id to a token, special tokens included"""
244
- if index in self.decoder:
245
- return self.decoder[index]
246
- raise ValueError("unknown ids")
247
-
248
- def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
- """Converts a token to an id using the vocab, special tokens included"""
250
- if token in self.special_tokens:
251
- return self.special_tokens[token]
252
- if token in self.mergeable_ranks:
253
- return self.mergeable_ranks[token]
254
- raise ValueError("unknown token")
255
-
256
- def _tokenize(self, text: str, **kwargs):
257
- """
258
- Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
- vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
-
261
- Do NOT take care of added tokens.
262
- """
263
- raise NotImplementedError
264
-
265
- def _decode(
266
- self,
267
- token_ids: Union[int, List[int]],
268
- skip_special_tokens: bool = False,
269
- errors: str = None,
270
- **kwargs,
271
- ) -> str:
272
- if isinstance(token_ids, int):
273
- token_ids = [token_ids]
274
- if skip_special_tokens:
275
- token_ids = [i for i in token_ids if i < self.eod_id]
276
- return self.tokenizer.decode(token_ids, errors=errors or self.errors)