File size: 3,513 Bytes
aea3510 07938a4 aea3510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
inference: false
license: apache-2.0
---
# Model Card
<p align="center">
<img src="./icon.png" alt="Logo" width="350">
</p>
๐ [Technical report](https://arxiv.org/abs/2402.11530) | ๐ [Code](https://github.com/BAAI-DCAI/Bunny) | ๐ฐ [Demo](https://d61b68ac93656b614f.gradio.live/)
This is Bunny-v1.1-4B.
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Phi-3-mini, Llama-3-8B, Phi-1.5, StableLM-2 and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source.
We provide Bunny-v1.1-4B, which is built upon [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) and [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) with [S \\(^{2}\\)-Wrapper](https://github.com/bfshi/scaling_on_scales), supporting 1152x1152 resolution. More details about this model can be found in [GitHub](https://github.com/BAAI-DCAI/Bunny).
| | MME \\(^{\text{P}}\\) | MME \\(^{\text{C}}\\) | MMB \\(^{\text{T/D}}\\) | MMB-CN \\(^{\text{T/D}}\\) |SEED(-IMG) | MMMU \\(^{\text{V/T}}\\) | VQA \\(^{\text{v2}}\\) | GQA | SQA \\(^{\text{I}}\\) | POPE |
| ------------------ | :--------------: | :--------------: |:--------------: | :----------------: | :--: | :-----------------: | :---------------: | :--: | :--------------: | :--: |
| Bunny-v1.1-4B | 1503.9 | 362.9 | 74.1/74.1 |66.3/64.8 | 64.6(71.7) | 40.2/38.8 | 81.7 | 63.4 | 76.3 | 87.0 |
# Quickstart
Here we show a code snippet to show you how to use the model with transformers.
Before running the snippet, you need to install the following dependencies:
```shell
pip install torch transformers accelerate pillow
```
If the CUDA memory is enough, it would be faster to execute this snippet by setting `CUDA_VISIBLE_DEVICES=0`.
```python
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
device = 'cuda' # or cpu
torch.set_default_device(device)
# create model
model = AutoModelForCausalLM.from_pretrained(
'BAAI/Bunny-v1_1-4B',
torch_dtype=torch.float16, # float32 for cpu
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'BAAI/Bunny-v1_1-4B',
trust_remote_code=True)
# text prompt
prompt = 'Why is the image funny?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0).to(device)
# image, sample images can be found in images folder
image = Image.open('example_2.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device)
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=100,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
```
|