hyxmmm commited on
Commit
1ef63c4
β€’
1 Parent(s): dd3fe67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -15,11 +15,11 @@ language:
15
  <em>[Paper][Code][πŸ€—] (would be released soon)</em>
16
  </p>
17
 
18
- Infinity-Instruct-7M-0729-Llama3.1-70B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-7M and Infinity-Instruct-0729](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 and arena-hard compared to GPT4.
19
 
20
  ## **News**
21
 
22
- - πŸ”₯πŸ”₯πŸ”₯[2024/08/02] We release the model weights of [InfInstruct-Llama3.1-70B 0729](https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-70B), [InfInstruct-Llama3.1-8B 0729](https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Llama3_1-8B), [InfInstruct-Mistral-7B 0729](https://huggingface.co/BAAI/Infinity-Instruct-7M-0729-Mistral-7B).
23
 
24
  - πŸ”₯πŸ”₯πŸ”₯[2024/08/02] We release the 7M foundational dataset [Infinity-Instruct-7M](https://huggingface.co/datasets/BAAI/Infinity-Instruct).
25
 
@@ -39,7 +39,7 @@ Infinity-Instruct-7M-0729-Llama3.1-70B is an opensource supervised instruction t
39
  <img src="fig/trainingflow.png">
40
  </p>
41
 
42
- Infinity-Instruct-7M-0729-Llama3.1-70B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-7M to improve the foundational ability (math & code) of Llama3.1-70B, and get the foundational instruct model Infinity-Instruct-7M-Llama3-70B. Then we finetune the Infinity-Instruct-7M-Llama3-70B to get the stronger chat model Infinity-Instruct-7M-0729-Llama3_1-70B. Here is the training hyperparamers.
43
 
44
  ```bash
45
  epoch: 3
@@ -70,13 +70,13 @@ Thanks to [FlagScale](https://github.com/FlagOpen/FlagScale), we could concatena
70
  | **InfInstruct-7M-Llama-3.1-8B** | **8.2** | **33.9** | **30.4** |
71
  | InfInstruct-3M-0613-Llama-3-70B | 8.7 | 31.5 | -- |
72
  | InfInstruct-3M-0625-Llama-3-70B | 8.9 | 38.0 | -- |
73
- | **InfInstruct-3M-0729-Llama-3.1-70B** | **8.9** | **46.1** | **66.0** |
74
 
75
  *denote the model is finetuned without reinforcement learning from human feedback (RLHF).
76
 
77
  ## **How to use**
78
 
79
- Infinity-Instruct-7M-0729-Llama3_1-70B adopt the same chat template of [Llama3-70B-instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct):
80
 
81
  ```bash
82
  <|begin_of_text|><|start_header_id|>user<|end_header_id|>
@@ -95,11 +95,11 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorLis
95
  import torch
96
  device = "cuda" # the device to load the model onto
97
 
98
- model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Llama3_1-70B",
99
  torch_dtype=torch.bfloat16,
100
  device_map="auto"
101
  )
102
- tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-0729-Llama3_1-70B")
103
 
104
  prompt = "Give me a short introduction to large language model."
105
  messages = [
 
15
  <em>[Paper][Code][πŸ€—] (would be released soon)</em>
16
  </p>
17
 
18
+ Infinity-Instruct-7M-Gen-Llama3.1-70B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-7M and Infinity-Instruct-Gen](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 and arena-hard compared to GPT4.
19
 
20
  ## **News**
21
 
22
+ - πŸ”₯πŸ”₯πŸ”₯[2024/08/02] We release the model weights of [InfInstruct-Llama3.1-70B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B), [InfInstruct-Llama3.1-8B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B), [InfInstruct-Mistral-7B Gen](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Mistral-7B).
23
 
24
  - πŸ”₯πŸ”₯πŸ”₯[2024/08/02] We release the 7M foundational dataset [Infinity-Instruct-7M](https://huggingface.co/datasets/BAAI/Infinity-Instruct).
25
 
 
39
  <img src="fig/trainingflow.png">
40
  </p>
41
 
42
+ Infinity-Instruct-7M-Gen-Llama3.1-70B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-7M to improve the foundational ability (math & code) of Llama3.1-70B, and get the foundational instruct model Infinity-Instruct-7M-Llama3-70B. Then we finetune the Infinity-Instruct-7M-Llama3-70B to get the stronger chat model Infinity-Instruct-7M-Gen-Llama3_1-70B. Here is the training hyperparamers.
43
 
44
  ```bash
45
  epoch: 3
 
70
  | **InfInstruct-7M-Llama-3.1-8B** | **8.2** | **33.9** | **30.4** |
71
  | InfInstruct-3M-0613-Llama-3-70B | 8.7 | 31.5 | -- |
72
  | InfInstruct-3M-0625-Llama-3-70B | 8.9 | 38.0 | -- |
73
+ | **InfInstruct-3M-Gen-Llama-3.1-70B** | **8.9** | **46.1** | **66.0** |
74
 
75
  *denote the model is finetuned without reinforcement learning from human feedback (RLHF).
76
 
77
  ## **How to use**
78
 
79
+ Infinity-Instruct-7M-Gen-Llama3_1-70B adopt the same chat template of [Llama3-70B-instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct):
80
 
81
  ```bash
82
  <|begin_of_text|><|start_header_id|>user<|end_header_id|>
 
95
  import torch
96
  device = "cuda" # the device to load the model onto
97
 
98
+ model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B",
99
  torch_dtype=torch.bfloat16,
100
  device_map="auto"
101
  )
102
+ tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-7M-Gen-Llama3_1-70B")
103
 
104
  prompt = "Give me a short introduction to large language model."
105
  messages = [