File size: 8,776 Bytes
41cc50f
29fbe26
 
 
 
 
 
41cc50f
3c06a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity

---


# BGE-M3
In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity. 
- Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval. 
- Multi-Linguality: It can support more than 100 working languages. 
- Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens. 

**Some suggestions for retrieval pipeline in RAG:**
We recommend to use following pipeline: hybrid retrieval + re-ranking. 
- Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities. 
A classic example: using both embedding retrieval and the BM25 algorithm. 
Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval. 
This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
- As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model. 
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.


## FAQ

**1. Introduction for different retrieval methods**

- Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
- Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
- Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).

**2. How to use BGE-M3 in other projects?**

For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE. 
The only difference is that the BGE-M3 model no longer requires adding instructions to the queries. 
For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model. 
Contributions from the community are welcome. 


**3. How to fine-tune bge-M3 model?**

You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) 
to fine-tune the dense embedding.

Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.




## Usage

Install: 
```
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install -e .
```
or: 
```
pip install -U FlagEmbedding
```



### Generate Embedding for text

- Dense Embedding
```python
from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

embeddings_1 = model.encode(sentences_1)['dense_vecs']
embeddings_2 = model.encode(sentences_2)['dense_vecs']
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# [[0.6265, 0.3477], [0.3499, 0.678 ]]
```
You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.


- Sparse Embedding (Lexical Weight)
```python
from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)

# you can see the weight for each token:
print(model.convert_id_to_token(output_1['lexical_weights']))
# [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092}, 
#  {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]


# compute the scores via lexical mathcing
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
print(lexical_scores)
# 0.19554901123046875

print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
# 0.0
```

- Multi-Vector (ColBERT)
```python
from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) 

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)

print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
# 0.7797
# 0.4620
```


### Compute score for text pairs
Input a list of text pairs, you can get the scores computed by different methods.
```python
from FlagEmbedding import BGEM3FlagModel

model = BGEM3FlagModel('BAAI/bge-m3',  use_fp16=True) 

sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.", 
               "BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]

sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
print(model.compute_score(sentence_pairs))
# {
#     'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
#     'sparse': [0.05865478515625, 0.0026397705078125, 0.0, 0.0540771484375],
#     'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
#     'sparse+dense': [0.5266395211219788, 0.2692706882953644, 0.2691181004047394, 0.563307523727417],
#     'colbert+sparse+dense': [0.6366440653800964, 0.3531297743320465, 0.3487969636917114, 0.6618075370788574]
# }
```




## Evaluation  

- Multilingual (Miracl dataset) 

![avatar](./imgs/miracl.jpg)

- Cross-lingual (MKQA dataset)

![avatar](./imgs/mkqa.jpg)

- Long Document Retrieval

![avatar](./imgs/long.jpg)


## Training
- Self-knowledge Distillation: combining multiple outputs from different 
retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
- Efficient Batching: Improve the efficiency when fine-tuning on long text. 
The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
- MCLS: A simple method to improve the performance on long text without fine-tuning. 
If you have no enough resource to fine-tuning model with long text, the method is useful.

Refer to our [report]() for more details.

**The fine-tuning codes and datasets will be open-sourced in the near future.**

## Models

We release two versions:
- BAAI/bge-m3-unsupervised: the model after contrastive learning in a large-scale dataset
- BAAI/bge-m3: the final model fine-tuned from BAAI/bge-m3-unsupervised

## Acknowledgement

Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.  

## Citation

If you find this repository useful, please consider giving a star :star: and citation

```

```