Shitao commited on
Commit
3641912
1 Parent(s): 3ab7155

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -27,8 +27,9 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen
27
 
28
 
29
  ## News:
30
- - 2/6/2024: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
31
- - 2/1/2024: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
 
32
 
33
 
34
  ## Specs
@@ -46,9 +47,11 @@ Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen
46
 
47
  - Data
48
 
49
- | Dataset | Introduction |
50
- |:----:|:---:|
51
- | [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages|
 
 
52
 
53
 
54
  ## FAQ
@@ -88,7 +91,8 @@ In our experiments, we use [Pyserini](https://github.com/FlagOpen/FlagEmbedding/
88
  You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
89
  to fine-tune the dense embedding.
90
 
91
- Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.
 
92
 
93
 
94
 
@@ -258,7 +262,6 @@ If you have no enough resource to fine-tuning model with long text, the method i
258
 
259
  Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
260
 
261
- **The fine-tuning codes and datasets will be open-sourced in the near future.**
262
 
263
 
264
  ## Acknowledgement
 
27
 
28
 
29
  ## News:
30
+ - 2024/3/2: Release unified fine-tuning [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune) and [data](https://huggingface.co/datasets/Shitao/bge-m3-data)
31
+ - 2024/2/6: We release the [MLDR](https://huggingface.co/datasets/Shitao/MLDR) (a long document retrieval dataset covering 13 languages) and [evaluation pipeline](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB/MLDR).
32
+ - 2024/2/1: **Thanks for the excellent tool from Vespa.** You can easily use multiple modes of BGE-M3 following this [notebook](https://github.com/vespa-engine/pyvespa/blob/master/docs/sphinx/source/examples/mother-of-all-embedding-models-cloud.ipynb)
33
 
34
 
35
  ## Specs
 
47
 
48
  - Data
49
 
50
+ | Dataset | Introduction |
51
+ |:----------------------------------------------------------:|:-------------------------------------------------:|
52
+ | [MLDR](https://huggingface.co/datasets/Shitao/MLDR) | Docuemtn Retrieval Dataset, covering 13 languages |
53
+ | [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) | Fine-tuning data used by bge-m3 |
54
+
55
 
56
 
57
  ## FAQ
 
91
  You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
92
  to fine-tune the dense embedding.
93
 
94
+ If you want to fine-tune all embedding function of m3, you can refer to the [unified_fine-tuning example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/unified_finetune)
95
+
96
 
97
 
98
 
 
262
 
263
  Refer to our [report](https://arxiv.org/pdf/2402.03216.pdf) for more details.
264
 
 
265
 
266
 
267
  ## Acknowledgement