Update README.md
Browse files
README.md
CHANGED
@@ -6,51 +6,3 @@ tags:
|
|
6 |
- sentence-similarity
|
7 |
|
8 |
---
|
9 |
-
|
10 |
-
# {MODEL_NAME}
|
11 |
-
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
-
|
14 |
-
<!--- Describe your model here -->
|
15 |
-
|
16 |
-
## Usage (Sentence-Transformers)
|
17 |
-
|
18 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
-
|
20 |
-
```
|
21 |
-
pip install -U sentence-transformers
|
22 |
-
```
|
23 |
-
|
24 |
-
Then you can use the model like this:
|
25 |
-
|
26 |
-
```python
|
27 |
-
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
-
|
30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
-
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
33 |
-
```
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
## Evaluation Results
|
38 |
-
|
39 |
-
<!--- Describe how your model was evaluated -->
|
40 |
-
|
41 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
## Full Model Architecture
|
46 |
-
```
|
47 |
-
SentenceTransformer(
|
48 |
-
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
49 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
50 |
-
(2): Normalize()
|
51 |
-
)
|
52 |
-
```
|
53 |
-
|
54 |
-
## Citing & Authors
|
55 |
-
|
56 |
-
<!--- Describe where people can find more information -->
|
|
|
6 |
- sentence-similarity
|
7 |
|
8 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|