Shitao commited on
Commit
694b615
1 Parent(s): b28ce2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -48
README.md CHANGED
@@ -6,51 +6,3 @@ tags:
6
  - sentence-similarity
7
 
8
  ---
9
-
10
- # {MODEL_NAME}
11
-
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
-
14
- <!--- Describe your model here -->
15
-
16
- ## Usage (Sentence-Transformers)
17
-
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
-
20
- ```
21
- pip install -U sentence-transformers
22
- ```
23
-
24
- Then you can use the model like this:
25
-
26
- ```python
27
- from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
-
30
- model = SentenceTransformer('{MODEL_NAME}')
31
- embeddings = model.encode(sentences)
32
- print(embeddings)
33
- ```
34
-
35
-
36
-
37
- ## Evaluation Results
38
-
39
- <!--- Describe how your model was evaluated -->
40
-
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
-
43
-
44
-
45
- ## Full Model Architecture
46
- ```
47
- SentenceTransformer(
48
- (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
49
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
50
- (2): Normalize()
51
- )
52
- ```
53
-
54
- ## Citing & Authors
55
-
56
- <!--- Describe where people can find more information -->
 
6
  - sentence-similarity
7
 
8
  ---