BBBBirdIsTheWord
commited on
Commit
•
3ebce50
1
Parent(s):
1c38a03
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.20 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4c1ee3310efb0a911f4bb08633fcd5d298dff9e14a902cf2e95ef8afdb045bc
|
3 |
+
size 106833
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ecc4d3beb90>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ecc4d3ba900>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1695583247436529412,
|
28 |
+
"learning_rate": 0.00096,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaSqaPgFYkjwGRek+aSqaPgFYkjwGRek+aSqaPgFYkjwGRek+AOafv+KRob++9y8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATauTP6z8tr8ZnUe/P9buPoRsjz57ok8/41i/PtA0+b2q4no/YFuJv3MQyL+QCxM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABpKpo+AViSPAZF6T7yAMk+cR0HvKFMsj5pKpo+AViSPAZF6T7yAMk+cR0HvKFMsj5pKpo+AViSPAZF6T7yAMk+cR0HvKFMsj4A5p+/4pGhv773Lz8/PDu/wUCIv2YV0D+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.3011048 0.01786423 0.45560473]\n [ 0.3011048 0.01786423 0.45560473]\n [ 0.3011048 0.01786423 0.45560473]\n [-1.2492065 -1.2622645 0.687374 ]]",
|
34 |
+
"desired_goal": "[[ 1.1536652 -1.4295859 -0.77974087]\n [ 0.46647832 0.28012478 0.811073 ]\n [ 0.37372503 -0.12168276 0.9800211 ]\n [-1.073101 -1.563002 0.5743952 ]]",
|
35 |
+
"observation": "[[ 0.3011048 0.01786423 0.45560473 0.39258534 -0.00824677 0.34824088]\n [ 0.3011048 0.01786423 0.45560473 0.39258534 -0.00824677 0.34824088]\n [ 0.3011048 0.01786423 0.45560473 0.39258534 -0.00824677 0.34824088]\n [-1.2492065 -1.2622645 0.687374 -0.73138803 -1.0644761 1.625653 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANN2vvQlj6z0JHzo9vlMvPcXB/r0feRk+64PdPSJqCD00hBE+liUuPW3HpD23Lic+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.08587113 0.11493499 0.04543975]\n [ 0.04280447 -0.12439302 0.1498761 ]\n [ 0.10816177 0.03330434 0.14210588]\n [ 0.04251631 0.0804585 0.16326414]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv4tl7MPjGT+MAWyUSwGMAXSUR0Ci4DC8OCoTdX2UKGgGR7/Yay8jAzpHaAdLBGgIR0Ci37C04R29dX2UKGgGR7/H+DvmYBvKaAdLA2gIR0Ci33U8/2TQdX2UKGgGR7+hsoDxLCemaAdLAWgIR0Ci33mSpzcRdX2UKGgGR7/IvdM0xdpqaAdLA2gIR0Ci4EDq4YrKdX2UKGgGR7/hVrqMWGh3aAdLB2gIR0Ci4AByCFsYdX2UKGgGR7/W2+PBBRhuaAdLA2gIR0Ci38B4dIXkdX2UKGgGR7+xL5AQg9vCaAdLAmgIR0Ci4Eli8WbgdX2UKGgGR7/QdTYNAkcCaAdLA2gIR0Ci4A0cfeUIdX2UKGgGR7/PPEbYK6WgaAdLA2gIR0Ci380TcqOMdX2UKGgGR7/Ck/KQq7ROaAdLAmgIR0Ci4FJL/S6UdX2UKGgGR7+6qyWzF+/haAdLAmgIR0Ci4Bg4ffXPdX2UKGgGR7/TInjQzDXOaAdLA2gIR0Ci390uUUwjdX2UKGgGR7/eXj2i+L3saAdLB2gIR0Ci352FN+LFdX2UKGgGR7/bYbbUPQOXaAdLBGgIR0Ci4GaHCXQddX2UKGgGR7+xNrTH80k4aAdLAmgIR0Ci3+YDTz/ZdX2UKGgGR7+9q+Jxeb/faAdLAmgIR0Ci36Z62OQydX2UKGgGR7+ZxFRYRujzaAdLAWgIR0Ci4GvGyX2NdX2UKGgGR7/bieumrKeTaAdLBGgIR0Ci4Cs6q815dX2UKGgGR7+/r/sE7nxKaAdLAmgIR0Ci37KSHM2WdX2UKGgGR7/QZGrjo6jnaAdLA2gIR0Ci4HuCPIXCdX2UKGgGR7/WB4lhPTG6aAdLBGgIR0Ci3/rR0EHMdX2UKGgGR7/XvF3pwCKaaAdLBGgIR0Ci4D8biqACdX2UKGgGR7+728IzFdcCaAdLAmgIR0Ci4ALmITGpdX2UKGgGR7/dxPwd8zAOaAdLBGgIR0Ci38NK7I1cdX2UKGgGR7+jN8ma6STyaAdLAWgIR0Ci4AnWJ79idX2UKGgGR7+CRSxZ+x4ZaAdLAWgIR0Ci38oeo1k2dX2UKGgGR7/afA9FF2FGaAdLBGgIR0Ci4I9FF2FGdX2UKGgGR7/ae+23KB/aaAdLBGgIR0Ci4FMYl6Z6dX2UKGgGR7/H8gIQe3hGaAdLA2gIR0Ci39dxp+MIdX2UKGgGR7/JhJiAlOXWaAdLA2gIR0Ci4Jyn+AEudX2UKGgGR7/ZHOryUcGUaAdLBGgIR0Ci4BwEZBLPdX2UKGgGR7+has6q814xaAdLAWgIR0Ci4KNKRMewdX2UKGgGR7/QStNi6QNkaAdLA2gIR0Ci4GLFGXoldX2UKGgGR7/U12aDwpfAaAdLA2gIR0Ci3+blA/s3dX2UKGgGR7/aKVII4VASaAdLBGgIR0Ci4C7xEv0zdX2UKGgGR7+66pYLb5/LaAdLAmgIR0Ci3+8vmHQAdX2UKGgGR7/cEal1r6+GaAdLBGgIR0Ci4LQZOzppdX2UKGgGR7/TY3eenQ6ZaAdLBGgIR0Ci4HNz8xbjdX2UKGgGR7/Jm4iHIp6QaAdLA2gIR0Ci4D2bwz+FdX2UKGgGR7/JX2dupCKKaAdLA2gIR0Ci3/30Gu9wdX2UKGgGR7/N/GVAzHjqaAdLA2gIR0Ci4MMwlByCdX2UKGgGR7/OYRdyDIzWaAdLA2gIR0Ci4ILFXJYDdX2UKGgGR7+pXp4bCJoCaAdLAWgIR0Ci4IclXzUadX2UKGgGR7/AFK02LpA2aAdLAmgIR0Ci4MwBHTZydX2UKGgGR7/RYOlO45LiaAdLA2gIR0Ci4Et52QnydX2UKGgGR7/RmpEQXhwVaAdLA2gIR0Ci4Au9WZJDdX2UKGgGR7/LiExqO939aAdLA2gIR0Ci4JZXU6PsdX2UKGgGR7+7nHNorWiDaAdLAmgIR0Ci4FZDZ13ddX2UKGgGR7+4KeCkGiYcaAdLAmgIR0Ci4Ba8Yht+dX2UKGgGR7/Hygf2bobGaAdLA2gIR0Ci4NvqkdmydX2UKGgGR7+78zhxYJVsaAdLAmgIR0Ci4J8VpKzzdX2UKGgGR7+/7SApazNVaAdLAmgIR0Ci4F8TakAQdX2UKGgGR7/DcCYCyQgcaAdLAmgIR0Ci4OSRr8BNdX2UKGgGR7/QIj4YaYNRaAdLA2gIR0Ci4CRNIsiCdX2UKGgGR7+jELpiZv1laAdLAWgIR0Ci4Ot70Fr3dX2UKGgGR7+kwUQCjk+5aAdLAWgIR0Ci4O/A0sOHdX2UKGgGR7/Pi2lVLi++aAdLA2gIR0Ci4K8wpON6dX2UKGgGR7/IgLZzxPO6aAdLA2gIR0Ci4G894eLfdX2UKGgGR7+xjEvTPSlWaAdLAmgIR0Ci4Le1jRUndX2UKGgGR7/RWUr08NhFaAdLBGgIR0Ci4DfOUt7KdX2UKGgGR7/Re/Yao/A1aAdLA2gIR0Ci4Pzru6VddX2UKGgGR7/RhLoOhCdCaAdLA2gIR0Ci4Hw3HaN/dX2UKGgGR7/GEoOQQtjDaAdLA2gIR0Ci4Mfkmx+sdX2UKGgGR7/UDqGDcuanaAdLA2gIR0Ci4EhaTwDvdX2UKGgGR7/Ve8f3evZAaAdLA2gIR0Ci4Q1wo9cKdX2UKGgGR7+zk6tDD0lJaAdLAmgIR0Ci4NEr5IpZdX2UKGgGR7/LeLvTgEU1aAdLBGgIR0Ci4JEnkT6BdX2UKGgGR7/DtXxOLzf8aAdLAmgIR0Ci4RZIH1OCdX2UKGgGR7/SYJmdy1eCaAdLBGgIR0Ci4FyKm8/VdX2UKGgGR7+4CPp6hQFcaAdLAmgIR0Ci4SGg8KXwdX2UKGgGR7/JPgvUSZjQaAdLA2gIR0Ci4OEQXhwVdX2UKGgGR7/TK9PDYRNAaAdLA2gIR0Ci4KEXDWK/dX2UKGgGR7+nHim2sq8UaAdLAWgIR0Ci4OWFvhqCdX2UKGgGR7++8ujASFoMaAdLAmgIR0Ci4GWUB4lhdX2UKGgGR7/MBwMpgCwKaAdLA2gIR0Ci4S7M5fdAdX2UKGgGR7+6TaCcwxnGaAdLAmgIR0Ci4O5AyEcsdX2UKGgGR7/QwgTyrgfmaAdLA2gIR0Ci4K4+0PYndX2UKGgGR7/X4ffXPJJYaAdLBGgIR0Ci4HiZv1lHdX2UKGgGR7/OLn9vS+g2aAdLA2gIR0Ci4Pz8xbjcdX2UKGgGR7/Lfu1F6RhdaAdLA2gIR0Ci4Lz+3pfQdX2UKGgGR7/Y+23KB/ZvaAdLBGgIR0Ci4UI0hvBKdX2UKGgGR7+7/1g6U7jlaAdLAmgIR0Ci4IHLRrrPdX2UKGgGR7/DEmY0EX+EaAdLAmgIR0Ci4QXrMTvidX2UKGgGR7/CmR/3FkxzaAdLAmgIR0Ci4MX6hxo7dX2UKGgGR7/KkGiYb83uaAdLA2gIR0Ci4VGNrCWNdX2UKGgGR7/PrftQbdadaAdLA2gIR0Ci4JEPczqKdX2UKGgGR7/FH6Mzdk8SaAdLA2gIR0Ci4RVq33HrdX2UKGgGR7/M/LTx5LRKaAdLA2gIR0Ci4NV5a/yodX2UKGgGR7+8n6VMVUMoaAdLAmgIR0Ci4N2nKnvVdX2UKGgGR7/I5RTCLuQZaAdLA2gIR0Ci4J4CyQgcdX2UKGgGR7/eZ26kIomYaAdLBGgIR0Ci4WVVo6CEdX2UKGgGR7+SgCfYjB2waAdLAWgIR0Ci4WooNNJwdX2UKGgGR7/dBFd9lVcVaAdLBGgIR0Ci4SmU4aP0dX2UKGgGR7/CD5CWu5jIaAdLAmgIR0Ci4OmdI5HVdX2UKGgGR7/LMdLg4wRHaAdLA2gIR0Ci4K4rJ8v3dX2UKGgGR7+zhsImgJ1JaAdLAmgIR0Ci4XNrsSkCdX2UKGgGR7+m0G/vfCQ+aAdLAWgIR0Ci4Xf0NBnjdX2UKGgGR7/KgAZKnNxEaAdLA2gIR0Ci4TfwiJO4dX2UKGgGR7/GxIJ7b+LnaAdLA2gIR0Ci4Pgc94eLdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 0.9,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.4,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fcb9b945171ca1b2bb84eee7c1d32168ae8b14125c426c5f91164d4f2d4ea1b
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19c04f9b05a04267dae814f0c04277736c01302e40c5626239a873d54fd0175b
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ecc4d3beb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecc4d3ba900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695583247436529412, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaSqaPgFYkjwGRek+aSqaPgFYkjwGRek+aSqaPgFYkjwGRek+AOafv+KRob++9y8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATauTP6z8tr8ZnUe/P9buPoRsjz57ok8/41i/PtA0+b2q4no/YFuJv3MQyL+QCxM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABpKpo+AViSPAZF6T7yAMk+cR0HvKFMsj5pKpo+AViSPAZF6T7yAMk+cR0HvKFMsj5pKpo+AViSPAZF6T7yAMk+cR0HvKFMsj4A5p+/4pGhv773Lz8/PDu/wUCIv2YV0D+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3011048 0.01786423 0.45560473]\n [ 0.3011048 0.01786423 0.45560473]\n [ 0.3011048 0.01786423 0.45560473]\n [-1.2492065 -1.2622645 0.687374 ]]", "desired_goal": "[[ 1.1536652 -1.4295859 -0.77974087]\n [ 0.46647832 0.28012478 0.811073 ]\n [ 0.37372503 -0.12168276 0.9800211 ]\n [-1.073101 -1.563002 0.5743952 ]]", "observation": "[[ 0.3011048 0.01786423 0.45560473 0.39258534 -0.00824677 0.34824088]\n [ 0.3011048 0.01786423 0.45560473 0.39258534 -0.00824677 0.34824088]\n [ 0.3011048 0.01786423 0.45560473 0.39258534 -0.00824677 0.34824088]\n [-1.2492065 -1.2622645 0.687374 -0.73138803 -1.0644761 1.625653 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANN2vvQlj6z0JHzo9vlMvPcXB/r0feRk+64PdPSJqCD00hBE+liUuPW3HpD23Lic+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08587113 0.11493499 0.04543975]\n [ 0.04280447 -0.12439302 0.1498761 ]\n [ 0.10816177 0.03330434 0.14210588]\n [ 0.04251631 0.0804585 0.16326414]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv4tl7MPjGT+MAWyUSwGMAXSUR0Ci4DC8OCoTdX2UKGgGR7/Yay8jAzpHaAdLBGgIR0Ci37C04R29dX2UKGgGR7/H+DvmYBvKaAdLA2gIR0Ci33U8/2TQdX2UKGgGR7+hsoDxLCemaAdLAWgIR0Ci33mSpzcRdX2UKGgGR7/IvdM0xdpqaAdLA2gIR0Ci4EDq4YrKdX2UKGgGR7/hVrqMWGh3aAdLB2gIR0Ci4AByCFsYdX2UKGgGR7/W2+PBBRhuaAdLA2gIR0Ci38B4dIXkdX2UKGgGR7+xL5AQg9vCaAdLAmgIR0Ci4Eli8WbgdX2UKGgGR7/QdTYNAkcCaAdLA2gIR0Ci4A0cfeUIdX2UKGgGR7/PPEbYK6WgaAdLA2gIR0Ci380TcqOMdX2UKGgGR7/Ck/KQq7ROaAdLAmgIR0Ci4FJL/S6UdX2UKGgGR7+6qyWzF+/haAdLAmgIR0Ci4Bg4ffXPdX2UKGgGR7/TInjQzDXOaAdLA2gIR0Ci390uUUwjdX2UKGgGR7/eXj2i+L3saAdLB2gIR0Ci352FN+LFdX2UKGgGR7/bYbbUPQOXaAdLBGgIR0Ci4GaHCXQddX2UKGgGR7+xNrTH80k4aAdLAmgIR0Ci3+YDTz/ZdX2UKGgGR7+9q+Jxeb/faAdLAmgIR0Ci36Z62OQydX2UKGgGR7+ZxFRYRujzaAdLAWgIR0Ci4GvGyX2NdX2UKGgGR7/bieumrKeTaAdLBGgIR0Ci4Cs6q815dX2UKGgGR7+/r/sE7nxKaAdLAmgIR0Ci37KSHM2WdX2UKGgGR7/QZGrjo6jnaAdLA2gIR0Ci4HuCPIXCdX2UKGgGR7/WB4lhPTG6aAdLBGgIR0Ci3/rR0EHMdX2UKGgGR7/XvF3pwCKaaAdLBGgIR0Ci4D8biqACdX2UKGgGR7+728IzFdcCaAdLAmgIR0Ci4ALmITGpdX2UKGgGR7/dxPwd8zAOaAdLBGgIR0Ci38NK7I1cdX2UKGgGR7+jN8ma6STyaAdLAWgIR0Ci4AnWJ79idX2UKGgGR7+CRSxZ+x4ZaAdLAWgIR0Ci38oeo1k2dX2UKGgGR7/afA9FF2FGaAdLBGgIR0Ci4I9FF2FGdX2UKGgGR7/ae+23KB/aaAdLBGgIR0Ci4FMYl6Z6dX2UKGgGR7/H8gIQe3hGaAdLA2gIR0Ci39dxp+MIdX2UKGgGR7/JhJiAlOXWaAdLA2gIR0Ci4Jyn+AEudX2UKGgGR7/ZHOryUcGUaAdLBGgIR0Ci4BwEZBLPdX2UKGgGR7+has6q814xaAdLAWgIR0Ci4KNKRMewdX2UKGgGR7/QStNi6QNkaAdLA2gIR0Ci4GLFGXoldX2UKGgGR7/U12aDwpfAaAdLA2gIR0Ci3+blA/s3dX2UKGgGR7/aKVII4VASaAdLBGgIR0Ci4C7xEv0zdX2UKGgGR7+66pYLb5/LaAdLAmgIR0Ci3+8vmHQAdX2UKGgGR7/cEal1r6+GaAdLBGgIR0Ci4LQZOzppdX2UKGgGR7/TY3eenQ6ZaAdLBGgIR0Ci4HNz8xbjdX2UKGgGR7/Jm4iHIp6QaAdLA2gIR0Ci4D2bwz+FdX2UKGgGR7/JX2dupCKKaAdLA2gIR0Ci3/30Gu9wdX2UKGgGR7/N/GVAzHjqaAdLA2gIR0Ci4MMwlByCdX2UKGgGR7/OYRdyDIzWaAdLA2gIR0Ci4ILFXJYDdX2UKGgGR7+pXp4bCJoCaAdLAWgIR0Ci4IclXzUadX2UKGgGR7/AFK02LpA2aAdLAmgIR0Ci4MwBHTZydX2UKGgGR7/RYOlO45LiaAdLA2gIR0Ci4Et52QnydX2UKGgGR7/RmpEQXhwVaAdLA2gIR0Ci4Au9WZJDdX2UKGgGR7/LiExqO939aAdLA2gIR0Ci4JZXU6PsdX2UKGgGR7+7nHNorWiDaAdLAmgIR0Ci4FZDZ13ddX2UKGgGR7+4KeCkGiYcaAdLAmgIR0Ci4Ba8Yht+dX2UKGgGR7/Hygf2bobGaAdLA2gIR0Ci4NvqkdmydX2UKGgGR7+78zhxYJVsaAdLAmgIR0Ci4J8VpKzzdX2UKGgGR7+/7SApazNVaAdLAmgIR0Ci4F8TakAQdX2UKGgGR7/DcCYCyQgcaAdLAmgIR0Ci4OSRr8BNdX2UKGgGR7/QIj4YaYNRaAdLA2gIR0Ci4CRNIsiCdX2UKGgGR7+jELpiZv1laAdLAWgIR0Ci4Ot70Fr3dX2UKGgGR7+kwUQCjk+5aAdLAWgIR0Ci4O/A0sOHdX2UKGgGR7/Pi2lVLi++aAdLA2gIR0Ci4K8wpON6dX2UKGgGR7/IgLZzxPO6aAdLA2gIR0Ci4G894eLfdX2UKGgGR7+xjEvTPSlWaAdLAmgIR0Ci4Le1jRUndX2UKGgGR7/RWUr08NhFaAdLBGgIR0Ci4DfOUt7KdX2UKGgGR7/Re/Yao/A1aAdLA2gIR0Ci4Pzru6VddX2UKGgGR7/RhLoOhCdCaAdLA2gIR0Ci4Hw3HaN/dX2UKGgGR7/GEoOQQtjDaAdLA2gIR0Ci4Mfkmx+sdX2UKGgGR7/UDqGDcuanaAdLA2gIR0Ci4EhaTwDvdX2UKGgGR7/Ve8f3evZAaAdLA2gIR0Ci4Q1wo9cKdX2UKGgGR7+zk6tDD0lJaAdLAmgIR0Ci4NEr5IpZdX2UKGgGR7/LeLvTgEU1aAdLBGgIR0Ci4JEnkT6BdX2UKGgGR7/DtXxOLzf8aAdLAmgIR0Ci4RZIH1OCdX2UKGgGR7/SYJmdy1eCaAdLBGgIR0Ci4FyKm8/VdX2UKGgGR7+4CPp6hQFcaAdLAmgIR0Ci4SGg8KXwdX2UKGgGR7/JPgvUSZjQaAdLA2gIR0Ci4OEQXhwVdX2UKGgGR7/TK9PDYRNAaAdLA2gIR0Ci4KEXDWK/dX2UKGgGR7+nHim2sq8UaAdLAWgIR0Ci4OWFvhqCdX2UKGgGR7++8ujASFoMaAdLAmgIR0Ci4GWUB4lhdX2UKGgGR7/MBwMpgCwKaAdLA2gIR0Ci4S7M5fdAdX2UKGgGR7+6TaCcwxnGaAdLAmgIR0Ci4O5AyEcsdX2UKGgGR7/QwgTyrgfmaAdLA2gIR0Ci4K4+0PYndX2UKGgGR7/X4ffXPJJYaAdLBGgIR0Ci4HiZv1lHdX2UKGgGR7/OLn9vS+g2aAdLA2gIR0Ci4Pz8xbjcdX2UKGgGR7/Lfu1F6RhdaAdLA2gIR0Ci4Lz+3pfQdX2UKGgGR7/Y+23KB/ZvaAdLBGgIR0Ci4UI0hvBKdX2UKGgGR7+7/1g6U7jlaAdLAmgIR0Ci4IHLRrrPdX2UKGgGR7/DEmY0EX+EaAdLAmgIR0Ci4QXrMTvidX2UKGgGR7/CmR/3FkxzaAdLAmgIR0Ci4MX6hxo7dX2UKGgGR7/KkGiYb83uaAdLA2gIR0Ci4VGNrCWNdX2UKGgGR7/PrftQbdadaAdLA2gIR0Ci4JEPczqKdX2UKGgGR7/FH6Mzdk8SaAdLA2gIR0Ci4RVq33HrdX2UKGgGR7/M/LTx5LRKaAdLA2gIR0Ci4NV5a/yodX2UKGgGR7+8n6VMVUMoaAdLAmgIR0Ci4N2nKnvVdX2UKGgGR7/I5RTCLuQZaAdLA2gIR0Ci4J4CyQgcdX2UKGgGR7/eZ26kIomYaAdLBGgIR0Ci4WVVo6CEdX2UKGgGR7+SgCfYjB2waAdLAWgIR0Ci4WooNNJwdX2UKGgGR7/dBFd9lVcVaAdLBGgIR0Ci4SmU4aP0dX2UKGgGR7/CD5CWu5jIaAdLAmgIR0Ci4OmdI5HVdX2UKGgGR7/LMdLg4wRHaAdLA2gIR0Ci4K4rJ8v3dX2UKGgGR7+zhsImgJ1JaAdLAmgIR0Ci4XNrsSkCdX2UKGgGR7+m0G/vfCQ+aAdLAWgIR0Ci4Xf0NBnjdX2UKGgGR7/KgAZKnNxEaAdLA2gIR0Ci4TfwiJO4dX2UKGgGR7/GxIJ7b+LnaAdLA2gIR0Ci4Pgc94eLdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (712 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.19678611857816578, "std_reward": 0.10057490499601217, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-24T21:45:08.065111"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:877b54ef9305fe724cd8a7764cb4a289f2ea6f81922f93127a405cae8b9474d4
|
3 |
+
size 2623
|