--- base_model: BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 datasets: - pszemraj/synthetic-text-similarity --- # BEE-spoke-data/bert-plus-L8-v1.0-syntheticSTS-4k Open In Colab This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. - Continued-tune of [BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka](https://hf.co/BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka) - ctx 4096 on synthetic text similarity dataset of `text1`, `text2`, `label` - Matryoshka dims: [768, 512, 256, 128, 64] ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('BEE-spoke-data/bert-plus-L8-v1.0-syntheticSTS-4k') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BEE-spoke-data/bert-plus-L8-v1.0-syntheticSTS-4k') model = AutoModel.from_pretrained('BEE-spoke-data/bert-plus-L8-v1.0-syntheticSTS-4k') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **Loss**: `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: ``` {'loss': 'CosineSimilarityLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1], 'n_dims_per_step': -1} ``` See more details at [the training run on wandb](https://wandb.ai/pszemraj/test-sbert-v3-api/runs/suv4fd2p) ---