File size: 2,326 Bytes
2473a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- generated_from_trainer
model-index:
- name: finetune_arc_20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_arc_20
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7783
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3635 | 1.0 | 150 | 1.2844 |
| 0.8018 | 2.0 | 300 | 1.3583 |
| 0.4765 | 3.0 | 450 | 1.5943 |
| 0.2923 | 4.0 | 600 | 1.8834 |
| 0.1973 | 5.0 | 750 | 1.9693 |
| 0.1986 | 6.0 | 900 | 2.0187 |
| 0.1769 | 7.0 | 1050 | 2.1674 |
| 0.1359 | 8.0 | 1200 | 2.1402 |
| 0.1778 | 9.0 | 1350 | 2.3226 |
| 0.1353 | 10.0 | 1500 | 2.3321 |
| 0.1426 | 11.0 | 1650 | 2.4006 |
| 0.1412 | 12.0 | 1800 | 2.5354 |
| 0.164 | 13.0 | 1950 | 2.5339 |
| 0.1034 | 14.0 | 2100 | 2.5972 |
| 0.1087 | 15.0 | 2250 | 2.6059 |
| 0.0878 | 16.0 | 2400 | 2.6054 |
| 0.0985 | 17.0 | 2550 | 2.6881 |
| 0.1018 | 18.0 | 2700 | 2.7388 |
| 0.1091 | 19.0 | 2850 | 2.7657 |
| 0.0846 | 20.0 | 3000 | 2.7783 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|