File size: 2,334 Bytes
7b971b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- generated_from_trainer
model-index:
- name: finetune_arc_20_cot
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetune_arc_20_cot

This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8229

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2708        | 1.0   | 150  | 1.2201          |
| 0.8854        | 2.0   | 300  | 1.2765          |
| 0.567         | 3.0   | 450  | 1.4685          |
| 0.3112        | 4.0   | 600  | 1.7395          |
| 0.1762        | 5.0   | 750  | 2.0026          |
| 0.1228        | 6.0   | 900  | 2.0326          |
| 0.1002        | 7.0   | 1050 | 2.1066          |
| 0.0931        | 8.0   | 1200 | 2.1262          |
| 0.1434        | 9.0   | 1350 | 2.2417          |
| 0.0746        | 10.0  | 1500 | 2.3327          |
| 0.069         | 11.0  | 1650 | 2.3327          |
| 0.0804        | 12.0  | 1800 | 2.5652          |
| 0.0586        | 13.0  | 1950 | 2.4866          |
| 0.0652        | 14.0  | 2100 | 2.5962          |
| 0.0471        | 15.0  | 2250 | 2.6461          |
| 0.054         | 16.0  | 2400 | 2.6890          |
| 0.0602        | 17.0  | 2550 | 2.7081          |
| 0.0562        | 18.0  | 2700 | 2.7800          |
| 0.064         | 19.0  | 2850 | 2.8103          |
| 0.0509        | 20.0  | 3000 | 2.8229          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0