File size: 2,334 Bytes
7b971b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: llama2
base_model: lmsys/vicuna-7b-v1.5
tags:
- generated_from_trainer
model-index:
- name: finetune_arc_20_cot
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune_arc_20_cot
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8229
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2708 | 1.0 | 150 | 1.2201 |
| 0.8854 | 2.0 | 300 | 1.2765 |
| 0.567 | 3.0 | 450 | 1.4685 |
| 0.3112 | 4.0 | 600 | 1.7395 |
| 0.1762 | 5.0 | 750 | 2.0026 |
| 0.1228 | 6.0 | 900 | 2.0326 |
| 0.1002 | 7.0 | 1050 | 2.1066 |
| 0.0931 | 8.0 | 1200 | 2.1262 |
| 0.1434 | 9.0 | 1350 | 2.2417 |
| 0.0746 | 10.0 | 1500 | 2.3327 |
| 0.069 | 11.0 | 1650 | 2.3327 |
| 0.0804 | 12.0 | 1800 | 2.5652 |
| 0.0586 | 13.0 | 1950 | 2.4866 |
| 0.0652 | 14.0 | 2100 | 2.5962 |
| 0.0471 | 15.0 | 2250 | 2.6461 |
| 0.054 | 16.0 | 2400 | 2.6890 |
| 0.0602 | 17.0 | 2550 | 2.7081 |
| 0.0562 | 18.0 | 2700 | 2.7800 |
| 0.064 | 19.0 | 2850 | 2.8103 |
| 0.0509 | 20.0 | 3000 | 2.8229 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|