File size: 6,448 Bytes
6d9a5e4
f5e3e4f
6d9a5e4
f5e3e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d9a5e4
 
f5e3e4f
 
 
 
2c06bab
f5e3e4f
 
 
 
 
 
 
 
 
 
2c06bab
 
f5e3e4f
 
 
 
2c06bab
f5e3e4f
 
 
2c06bab
 
f5e3e4f
 
 
 
 
2c06bab
f5e3e4f
 
 
2c06bab
f5e3e4f
 
2c06bab
f5e3e4f
 
 
2c06bab
f5e3e4f
 
 
 
2c06bab
f5e3e4f
2c06bab
f5e3e4f
 
 
 
 
 
 
 
 
 
 
 
 
2c06bab
f5e3e4f
 
 
 
1b78c48
 
 
 
 
 
 
 
 
f5e3e4f
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
tags:
    - convnextv2_base
    - BigEarthNet v2.0
    - Remote Sensing
    - Classification
    - image-classification
    - Multispectral
library_name: configilm
license: mit
widget:
  - src: example.png
    example_title: Example
    output:
      - label: Agro-forestry areas
        score: 0.000005
      - label: Arable land
        score: 0.000090
      - label: Beaches, dunes, sands
        score: 0.000094
      - label: Broad-leaved forest
        score: 0.000325
      - label: Coastal wetlands
        score: 0.000057
---

[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
:---:|:---:|:---:|:---:|:---:
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/>  |  <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">

# Convnextv2_base pretrained on BigEarthNet v2.0 using Sentinel-1 bands

<!-- Optional images -->
<!--
[Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
:---:|:---:
<a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
-->

This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 bands. 
It was trained using the following parameters:
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average 
precision macro)
- Batch size: 512
- Learning rate: 0.001
- Dropout rate: 0.15
- Drop Path rate: 0.15
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000  warmup steps
- Optimizer: AdamW
- Seed: 42

The weights published in this model card were obtained after 18 training epochs.
For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.

![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)

The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:

| Metric            |       Macro |       Micro |
|:------------------|------------------:|------------------:|
| Average Precision |        0.602211 |        0.789338 |
| F1 Score          |        0.548913 |        0.696168 |
| Precision         | 0.602211 | 0.789338 |

# Example
|             A Sentinel-1 image (VV, VH and VV/VH bands are used for visualization)              |
|:---------------------------------------------------:|
| ![[BigEarthNet](http://bigearth.net/)](example.png) |

| Class labels                                                              |                                                          Predicted scores |
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000005 <br> 0.000090 <br> 0.000094 <br> ... <br> 0.000058 </p> |


To use the model, download the codes that define the model architecture from the
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.

```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier

model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
```

e.g.

```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier

model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
  "BIFOLD-BigEarthNetv2-0/convnextv2_base-s1-v0.1.1")
```

If you use this model in your research or the provided code, please cite the following papers:
```bibtex
@article{clasen2024refinedbigearthnet,
          title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis}, 
          author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker},
          year={2024},
          eprint={2407.03653},
          archivePrefix={arXiv},
          primaryClass={cs.CV},
          url={https://arxiv.org/abs/2407.03653}, 
        }
```
```bibtex
@article{hackel2024configilm,
  title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
  author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
  journal={SoftwareX},
  volume={26},
  pages={101731},
  year={2024},
  publisher={Elsevier}
}
```