hackelle commited on
Commit
f4e19a1
1 Parent(s): b187441

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +109 -5
README.md CHANGED
@@ -1,9 +1,113 @@
1
  ---
 
2
  tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
3
  tags:
4
+ - resnet50
5
+ - BigEarthNet v2.0
6
+ - Remote Sensing
7
+ - Classification
8
+ - image-classification
9
+ - Multispectral
10
+ library_name: configilm
11
+ license: mit
12
+ widget:
13
+ - src: example.png
14
+ example_title: Example
15
+ output:
16
+ - label: Agro-forestry areas
17
+ score: 0.000000
18
+ - label: Arable land
19
+ score: 0.000000
20
+ - label: Beaches, dunes, sands
21
+ score: 0.000000
22
+ - label: Broad-leaved forest
23
+ score: 0.000000
24
+ - label: Coastal wetlands
25
+ score: 0.000000
26
  ---
27
 
28
+ [TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
29
+ :---:|:---:|:---:|:---:|:---:
30
+ <a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/> | <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">
31
+
32
+ # Resnet50 pretained on BigEarthNet v2.0 using Sentinel-1 bands
33
+
34
+ <!-- Optional images -->
35
+ <!--
36
+ [Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
37
+ :---:|:---:
38
+ <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
39
+ -->
40
+
41
+ This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-1 bands.
42
+ It was trained using the following parameters:
43
+ - Number of epochs: up to 100
44
+ - with early stopping
45
+ - after 5 epochs of no improvement
46
+ - based on validation average precision (macro)
47
+ - the weights published in this model card were obtained after 28 training epochs
48
+ - Batch size: 512
49
+ - Learning rate: 0.001
50
+ - Dropout rate: 0.15
51
+ - Drop Path rate: 0.15
52
+ - Learning rate scheduler: LinearWarmupCosineAnnealing for 1000 warmup steps
53
+ - Optimizer: AdamW
54
+ - Seed: 42
55
+
56
+ The model was trained using the training script of the
57
+ [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts).
58
+ See details in this repository for more information on how to train the model given the parameters above.
59
+
60
+ ![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)
61
+
62
+ The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:
63
+
64
+ | Metric | Value Macro | Value Micro |
65
+ |:------------------|------------------:|------------------:|
66
+ | Average Precision | 0.628013 | 0.808453 |
67
+ | F1 Score | 0.579930 | 0.709762 |
68
+ | Precision | 0.641501 | 0.761980 |
69
+
70
+ # Example
71
+ | Example Input (VV, VH and VV/VH bands from Sentinel-1) |
72
+ |:---------------------------------------------------:|
73
+ | ![[BigEarthNet](http://bigearth.net/)](example.png) |
74
+
75
+ | Example Output - Labels | Example Output - Scores |
76
+ |:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
77
+ | <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000000 <br> 0.000000 <br> 0.000000 <br> ... <br> 0.000000 </p> |
78
+
79
+
80
+ To use the model, download the codes that defines the model architecture from the
81
+ [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
82
+ code below. Note, that you have to install `configilm` to use the provided code.
83
+
84
+ ```python
85
+ from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
86
+
87
+ model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
88
+ ```
89
+
90
+ e.g.
91
+
92
+ ```python
93
+ from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier
94
+
95
+ model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
96
+ "BIFOLD-BigEarthNetv2-0/BENv2-resnet50-s1-v0.1.1")
97
+ ```
98
+
99
+ If you use this model in your research or the provided code, please cite the following papers:
100
+ ```bibtex
101
+ CITATION FOR DATASET PAPER
102
+ ```
103
+ ```bibtex
104
+ @article{hackel2024configilm,
105
+ title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
106
+ author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
107
+ journal={SoftwareX},
108
+ volume={26},
109
+ pages={101731},
110
+ year={2024},
111
+ publisher={Elsevier}
112
+ }
113
+ ```