File size: 6,403 Bytes
4c5148b
ae4aa8b
4c5148b
ae4aa8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c5148b
 
ae4aa8b
 
 
 
645be50
ae4aa8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645be50
ae4aa8b
 
 
 
 
 
 
 
 
 
 
 
 
 
645be50
ae4aa8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714615c
 
 
 
 
 
 
 
 
ae4aa8b
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
thumbnail: "https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png"
tags:
    - resnet50
    - BigEarthNet v2.0
    - Remote Sensing
    - Classification
    - image-classification
    - Multispectral
library_name: configilm
license: mit
widget:
  - src: example.png
    example_title: Example
    output:
      - label: Agro-forestry areas
        score: 0.000000
      - label: Arable land
        score: 0.000000
      - label: Beaches, dunes, sands
        score: 0.000000
      - label: Broad-leaved forest
        score: 0.000000
      - label: Coastal wetlands
        score: 0.000000
---

[TU Berlin](https://www.tu.berlin/) | [RSiM](https://rsim.berlin/) | [DIMA](https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/) | [BigEarth](http://www.bigearth.eu/) | [BIFOLD](https://bifold.berlin/)
:---:|:---:|:---:|:---:|:---:
<a href="https://www.tu.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/tu-berlin-logo-long-red.svg" style="font-size: 1rem; height: 2em; width: auto" alt="TU Berlin Logo"/>  |  <a href="https://rsim.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/RSiM_Logo_1.png" style="font-size: 1rem; height: 2em; width: auto" alt="RSiM Logo"> | <a href="https://www.dima.tu-berlin.de/menue/database_systems_and_information_management_group/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/DIMA.png" style="font-size: 1rem; height: 2em; width: auto" alt="DIMA Logo"> | <a href="http://www.bigearth.eu/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BigEarth.png" style="font-size: 1rem; height: 2em; width: auto" alt="BigEarth Logo"> | <a href="https://bifold.berlin/"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/BIFOLD_Logo_farbig.png" style="font-size: 1rem; height: 2em; width: auto; margin-right: 1em" alt="BIFOLD Logo">

# Resnet50 pretrained on BigEarthNet v2.0 using Sentinel-2 bands

<!-- Optional images -->
<!--
[Sentinel-1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) | [Sentinel-2](https://sentinel.esa.int/web/sentinel/missions/sentinel-2)
:---:|:---:
<a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-1"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_2.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-2 Satellite"/> | <a href="https://sentinel.esa.int/web/sentinel/missions/sentinel-2"><img src="https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/sentinel_1.jpg" style="font-size: 1rem; height: 10em; width: auto; margin-right: 1em" alt="Sentinel-1 Satellite"/>
-->

This model was trained on the BigEarthNet v2.0 (also known as reBEN) dataset using the Sentinel-2 bands. 
It was trained using the following parameters:
- Number of epochs: up to 100 (with early stopping after 5 epochs of no improvement based on validation average 
precision macro)
- Batch size: 512
- Learning rate: 0.001
- Dropout rate: 0.15
- Drop Path rate: 0.15
- Learning rate scheduler: LinearWarmupCosineAnnealing for 1000  warmup steps
- Optimizer: AdamW
- Seed: 24

The weights published in this model card were obtained after 24 training epochs.
For more information, please visit the [official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts), where you can find the training scripts.

![[BigEarthNet](http://bigearth.net/)](https://raw.githubusercontent.com/wiki/lhackel-tub/ConfigILM/static/imgs/combined_2000_600_2020_0_wide.jpg)

The model was evaluated on the test set of the BigEarthNet v2.0 dataset with the following results:

| Metric            |       Macro |       Micro |
|:------------------|------------------:|------------------:|
| Average Precision |        0.713829 |        0.861872 |
| F1 Score          |        0.656739 |        0.762676 |
| Precision         | 0.713829 | 0.861872 |

# Example
|             A Sentinel-2 image (true color representation)              |
|:---------------------------------------------------:|
| ![[BigEarthNet](http://bigearth.net/)](example.png) |

| Class labels                                                              |                                                          Predicted scores |
|:--------------------------------------------------------------------------|--------------------------------------------------------------------------:|
| <p> Agro-forestry areas <br> Arable land <br> Beaches, dunes, sands <br> ... <br> Urban fabric </p> | <p> 0.000000 <br> 0.000000 <br> 0.000000 <br> ... <br> 0.000000 </p> |


To use the model, download the codes that define the model architecture from the
[official BigEarthNet v2.0 (reBEN) repository](https://git.tu-berlin.de/rsim/reben-training-scripts) and load the model using the
code below. Note that you have to install [`configilm`](https://pypi.org/project/configilm/) to use the provided code.

```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier

model = BigEarthNetv2_0_ImageClassifier.from_pretrained("path_to/huggingface_model_folder")
```

e.g.

```python
from reben_publication.BigEarthNetv2_0_ImageClassifier import BigEarthNetv2_0_ImageClassifier

model = BigEarthNetv2_0_ImageClassifier.from_pretrained(
  "BIFOLD-BigEarthNetv2-0/resnet50-s2-v0.1.1")
```

If you use this model in your research or the provided code, please cite the following papers:
```bibtex
@article{clasen2024refinedbigearthnet,
          title={reBEN: Refined BigEarthNet Dataset for Remote Sensing Image Analysis}, 
          author={Clasen, Kai Norman and Hackel, Leonard and Burgert, Tom and Sumbul, Gencer and Demir, Beg{\"u}m and Markl, Volker},
          year={2024},
          eprint={2407.03653},
          archivePrefix={arXiv},
          primaryClass={cs.CV},
          url={https://arxiv.org/abs/2407.03653}, 
        }
```
```bibtex
@article{hackel2024configilm,
  title={ConfigILM: A general purpose configurable library for combining image and language models for visual question answering},
  author={Hackel, Leonard and Clasen, Kai Norman and Demir, Beg{\"u}m},
  journal={SoftwareX},
  volume={26},
  pages={101731},
  year={2024},
  publisher={Elsevier}
}
```