--- license: mit --- ### Simple running code is based on [MoAI-Github](https://github.com/ByungKwanLee/MoAI). You need only the following seven steps. ### [0] Download Github Code of MoAI. ```bash git clone https://github.com/ByungKwanLee/MoAI ``` ### [1] Loading Image ```python from PIL import Image from torchvision.transforms import Resize from torchvision.transforms.functional import pil_to_tensor image_path = "figures/moai_mystery.png" image = Resize(size=(490, 490), antialias=False)(pil_to_tensor(Image.open(image_path))) ``` ### [2] Instruction Prompt ```python prompt = "Describe this image in detail." ``` ### [3] Loading MoAI ```python from moai.load_moai import prepare_moai moai_model, moai_processor, seg_model, seg_processor, od_model, od_processor, sgg_model, ocr_model \ = prepare_moai(moai_path='/mnt/ssd/lbk-cvpr/MoAI/final', bits=4, grad_ckpt=False, lora=False, dtype='fp16') ``` ### [4] Pre-processing for MoAI ```python moai_inputs = moai_model.demo_process(image=image, prompt=prompt, processor=moai_processor, seg_model=seg_model, seg_processor=seg_processor, od_model=od_model, od_processor=od_processor, sgg_model=sgg_model, ocr_model=ocr_model, device='cuda:0') ``` ### [5] Generate ```python import torch with torch.inference_mode(): generate_ids = moai_model.generate(**moai_inputs, do_sample=True, temperature=0.9, top_p=0.95, max_new_tokens=256, use_cache=True) ``` ### [6] Decoding ```python answer = moai_processor.batch_decode(generate_ids, skip_special_tokens=True)[0].split('[U')[0] print(answer) ```