--- license: mit --- # Paper arxiv.org/abs/2409.14713 # Two steps only need. First step. (git clone and install required packages) ```bash # Download Project Code git clone https://github.com/ByungKwanLee/Phantom # Virtual Environment conda create -n trol python=3.11 -y conda activate trol # install torch pip3 install torch torchvision # install requiresments pip install -r requirements.txt # flash attention pip install flash-attn --no-build-isolation # all cache deleted conda clean -a && pip cache purge ``` Second step. (open, edit, and run `demo.py`) ```python # model selection size = '3.8b' # [Select One] '0.5b' (transformers more recent version) | '1.8b' | '3.8b' (transformers==4.37.2) | '7b' # User prompt prompt_type="with_image" # Select one option "text_only", "with_image" img_path='figures/demo.png' question="Describe the image in detail" # loading model model, tokenizer = load_model(size=size) # prompt type -> input prompt if prompt_type == 'with_image': # Image Load image = pil_to_tensor(Image.open(img_path).convert("RGB")) inputs = [{'image': image, 'question': question}] elif prompt_type=='text_only': inputs = [{'question': question}] # cpu -> gpu for param in model.parameters(): if not param.is_cuda: param.data = param.cuda() # Generate with torch.inference_mode(): # Model _inputs = model.eval_process(inputs=inputs, data='demo', tokenizer=tokenizer, device='cuda:0') generate_ids = model.generate(**_inputs, do_sample=False, max_new_tokens=256) answer = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0] print(answer) ``` So easy to run the code Let's shout Phantom!