--- base_model: microsoft/Phi-3-mini-4k-instruct library_name: peft license: mit tags: - generated_from_trainer model-index: - name: phi3-mini-4k-adapter_4 results: [] --- # phi3-mini-4k-adapter_4 This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.4868 | 0.9091 | 10 | 5.1948 | | 0.2094 | 1.8182 | 20 | 0.2065 | | 0.1037 | 2.7273 | 30 | 0.1536 | | 0.0781 | 3.6364 | 40 | 0.1529 | | 0.0635 | 4.5455 | 50 | 0.1555 | | 0.0612 | 5.4545 | 60 | 0.1575 | | 0.0548 | 6.3636 | 70 | 0.1723 | | 0.0502 | 7.2727 | 80 | 0.1769 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.1 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1