File size: 2,165 Bytes
8f3d2dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: google/vit-base-patch16-224-in21k
library_name: peft
license: apache-2.0
metrics:
- accuracy
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: vit-base-patch16-224-in21k-finetuned-tekno23
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-tekno23
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2583
- Accuracy: 0.4014
- F1: 0.3092
- Precision: 0.3870
- Recall: 0.4014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.3662 | 1.0 | 421 | 1.3619 | 0.3190 | 0.1618 | 0.2852 | 0.3190 |
| 1.3095 | 2.0 | 842 | 1.2970 | 0.3962 | 0.2933 | 0.4359 | 0.3962 |
| 1.2683 | 3.0 | 1263 | 1.2687 | 0.4020 | 0.3081 | 0.3550 | 0.4020 |
| 1.2524 | 4.0 | 1684 | 1.2576 | 0.4057 | 0.3098 | 0.3951 | 0.4057 |
| 1.2781 | 5.0 | 2105 | 1.2583 | 0.4014 | 0.3092 | 0.3870 | 0.4014 |
### Framework versions
- PEFT 0.12.1.dev0
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1 |