--- base_model: google/vit-base-patch16-224-in21k library_name: peft license: apache-2.0 metrics: - accuracy - f1 - precision - recall tags: - generated_from_trainer model-index: - name: vit-base-patch16-224-in21k-finetuned-tekno23 results: [] --- # vit-base-patch16-224-in21k-finetuned-tekno23 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2583 - Accuracy: 0.4014 - F1: 0.3092 - Precision: 0.3870 - Recall: 0.4014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.3662 | 1.0 | 421 | 1.3619 | 0.3190 | 0.1618 | 0.2852 | 0.3190 | | 1.3095 | 2.0 | 842 | 1.2970 | 0.3962 | 0.2933 | 0.4359 | 0.3962 | | 1.2683 | 3.0 | 1263 | 1.2687 | 0.4020 | 0.3081 | 0.3550 | 0.4020 | | 1.2524 | 4.0 | 1684 | 1.2576 | 0.4057 | 0.3098 | 0.3951 | 0.4057 | | 1.2781 | 5.0 | 2105 | 1.2583 | 0.4014 | 0.3092 | 0.3870 | 0.4014 | ### Framework versions - PEFT 0.12.1.dev0 - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1