File size: 3,139 Bytes
789be09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-kl_01_04-hs_cn-loto_migrants
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-kl_01_04-hs_cn-loto_migrants
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5142
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 21
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 72.7331 | 0.03 | 10 | 64.5524 |
| 31.1386 | 0.06 | 20 | 18.0676 |
| 8.0161 | 0.08 | 30 | 6.4050 |
| 3.3753 | 0.11 | 40 | 2.7106 |
| 1.601 | 0.14 | 50 | 1.1822 |
| 0.9923 | 0.17 | 60 | 0.8619 |
| 1.0632 | 0.2 | 70 | 0.8305 |
| 0.7501 | 0.23 | 80 | 0.6396 |
| 0.6715 | 0.25 | 90 | 0.6099 |
| 0.5965 | 0.28 | 100 | 0.6137 |
| 0.711 | 0.31 | 110 | 0.5942 |
| 0.6546 | 0.34 | 120 | 0.5745 |
| 0.6075 | 0.37 | 130 | 0.5696 |
| 0.5607 | 0.4 | 140 | 0.5633 |
| 0.5469 | 0.42 | 150 | 0.5569 |
| 0.6887 | 0.45 | 160 | 0.5543 |
| 0.6184 | 0.48 | 170 | 0.5495 |
| 0.596 | 0.51 | 180 | 0.5474 |
| 0.6104 | 0.54 | 190 | 0.5442 |
| 0.5553 | 0.57 | 200 | 0.5388 |
| 0.5714 | 0.59 | 210 | 0.5346 |
| 0.534 | 0.62 | 220 | 0.5356 |
| 0.5739 | 0.65 | 230 | 0.5326 |
| 0.5873 | 0.68 | 240 | 0.5298 |
| 0.619 | 0.71 | 250 | 0.5312 |
| 0.6038 | 0.74 | 260 | 0.5282 |
| 0.6058 | 0.76 | 270 | 0.5241 |
| 0.5508 | 0.79 | 280 | 0.5252 |
| 0.5919 | 0.82 | 290 | 0.5233 |
| 0.6513 | 0.85 | 300 | 0.5206 |
| 0.6376 | 0.88 | 310 | 0.5178 |
| 0.6252 | 0.91 | 320 | 0.5181 |
| 0.5341 | 0.93 | 330 | 0.5160 |
| 0.5913 | 0.96 | 340 | 0.5139 |
| 0.6227 | 0.99 | 350 | 0.5143 |
| 0.4582 | 1.02 | 360 | 0.5140 |
| 0.5281 | 1.05 | 370 | 0.5142 |
### Framework versions
- Transformers 4.28.0
- Pytorch 1.11.0+cu113
- Datasets 2.11.0
- Tokenizers 0.13.3
|