--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: msc_imasc_openslr_festfox_Whisper_Medium_2 results: [] --- # msc_imasc_openslr_festfox_Whisper_Medium_2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0424 - Wer: 18.1637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0482 | 0.79 | 1000 | 0.0801 | 40.4827 | | 0.0238 | 1.58 | 2000 | 0.0514 | 27.4944 | | 0.0105 | 2.37 | 3000 | 0.0447 | 22.8415 | | 0.0044 | 3.16 | 4000 | 0.0403 | 19.3580 | | 0.0037 | 3.95 | 5000 | 0.0408 | 19.3083 | | 0.0016 | 4.74 | 6000 | 0.0424 | 18.1637 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1