--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: zephyr-7b-dpo-full results: [] --- # zephyr-7b-dpo-full This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.3377 - Rewards/chosen: -14.5626 - Rewards/rejected: -18.1281 - Rewards/accuracies: 0.6389 - Rewards/margins: 3.5654 - Logps/rejected: -2073.0146 - Logps/chosen: -1738.2311 - Logits/rejected: -0.6819 - Logits/chosen: -1.0035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 4.5854 | 0.1047 | 100 | 4.3811 | -0.2719 | -0.4992 | 0.6488 | 0.2273 | -310.1242 | -309.1552 | -2.1923 | -2.2813 | | 2.6464 | 0.2093 | 200 | 2.6063 | -9.6247 | -11.6315 | 0.625 | 2.0068 | -1423.3580 | -1244.4360 | 0.6982 | -0.3562 | | 1.9069 | 0.3140 | 300 | 2.2624 | -9.8468 | -11.9256 | 0.6329 | 2.0788 | -1452.7675 | -1266.6490 | 1.5569 | 0.4590 | | 1.6642 | 0.4186 | 400 | 1.6421 | -14.4918 | -17.8494 | 0.625 | 3.3576 | -2045.1493 | -1731.1526 | -0.0875 | -0.7751 | | 1.6328 | 0.5233 | 500 | 1.5120 | -13.0737 | -16.3036 | 0.6389 | 3.2299 | -1890.5623 | -1589.3370 | -0.0918 | -0.6590 | | 1.6032 | 0.6279 | 600 | 1.4752 | -17.3374 | -21.4238 | 0.6230 | 4.0864 | -2402.5845 | -2015.7072 | 0.6402 | 0.0190 | | 1.5039 | 0.7326 | 700 | 1.3853 | -14.1299 | -17.5624 | 0.6528 | 3.4325 | -2016.4491 | -1694.9624 | -0.4968 | -0.8898 | | 1.3527 | 0.8373 | 800 | 1.3663 | -13.9016 | -17.2583 | 0.6448 | 3.3567 | -1986.0359 | -1672.1306 | -0.6750 | -1.0375 | | 1.5137 | 0.9419 | 900 | 1.3374 | -14.5395 | -18.1313 | 0.6409 | 3.5918 | -2073.3389 | -1735.9152 | -0.6740 | -1.0018 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1