BeardedMonster
commited on
Commit
•
2228dd4
1
Parent(s):
1da9b21
Upload GPTJXForCausalLM
Browse files- README.md +199 -0
- config.json +20 -0
- generation_config.json +4 -0
- model.safetensors +3 -0
- pretrained_config.py +30 -0
- pretrained_model.py +188 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/pretrainedmodel",
|
3 |
+
"architectures": [
|
4 |
+
"GPTJXForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "pretrained_config.GPTJXConfig",
|
8 |
+
"AutoModelForCausalLM": "pretrained_model.GPTJXForCausalLM"
|
9 |
+
},
|
10 |
+
"bias": false,
|
11 |
+
"block_size": 1024,
|
12 |
+
"dropout": 0.0,
|
13 |
+
"model_type": "nanogpt-j",
|
14 |
+
"n_embd": 768,
|
15 |
+
"n_head": 12,
|
16 |
+
"n_layer": 12,
|
17 |
+
"torch_dtype": "float32",
|
18 |
+
"transformers_version": "4.39.3",
|
19 |
+
"vocab_size": 52050
|
20 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.39.3"
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:135619ec5be52e21223cd0c9dfec01af7f7f1b4600fd7af22d4d1db313a7a6ee
|
3 |
+
size 553275408
|
pretrained_config.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
repo_name = "BeardedMonster/SabiYarn-125M"
|
4 |
+
|
5 |
+
class GPTJXConfig(PretrainedConfig):
|
6 |
+
model_type="nanogpt-j"
|
7 |
+
|
8 |
+
|
9 |
+
def __init__(self,
|
10 |
+
block_size: int = 1024,
|
11 |
+
vocab_size: int = 52050, #50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
|
12 |
+
n_layer: int = 12,
|
13 |
+
n_head: int = 12,
|
14 |
+
n_embd: int = 768,
|
15 |
+
dropout: float = 0.0,
|
16 |
+
bias: bool = False, # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
17 |
+
**kwargs
|
18 |
+
):
|
19 |
+
|
20 |
+
self.block_size = block_size
|
21 |
+
self.vocab_size = vocab_size
|
22 |
+
self.n_layer = n_layer
|
23 |
+
self.n_head = n_head
|
24 |
+
self.n_embd = n_embd
|
25 |
+
self.dropout = dropout
|
26 |
+
self.bias = bias
|
27 |
+
|
28 |
+
super().__init__(**kwargs)
|
29 |
+
|
30 |
+
|
pretrained_model.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, PreTrainedModel, AutoModelForCausalLM
|
2 |
+
from typing import List, Optional
|
3 |
+
from torch import nn
|
4 |
+
from model import LayerNorm, BlockJ
|
5 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
6 |
+
import torch
|
7 |
+
import math
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from transformers import AutoConfig, AutoModel
|
10 |
+
from .pretrained_config import *
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
class GPTJXForCausalLM(PreTrainedModel):
|
15 |
+
config_class = GPTJXConfig
|
16 |
+
base_model_prefix = "transformer"
|
17 |
+
is_parallelizable = True
|
18 |
+
supports_gradient_checkpointing = True
|
19 |
+
_no_split_modules = ["BlockJ"]
|
20 |
+
# _skip_keys_device_placement = "past_key_values"
|
21 |
+
_supports_flash_attn_2 = True
|
22 |
+
_tied_weights_keys = ["lm_head.weight"]
|
23 |
+
|
24 |
+
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__(config)
|
27 |
+
assert config.vocab_size is not None
|
28 |
+
assert config.block_size is not None
|
29 |
+
self.config = config
|
30 |
+
|
31 |
+
self.transformer = nn.ModuleDict(dict(
|
32 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
33 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
34 |
+
drop = nn.Dropout(config.dropout),
|
35 |
+
h = nn.ModuleList([BlockJ(config) for _ in range(config.n_layer)]),
|
36 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
37 |
+
))
|
38 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
39 |
+
# with weight tying when using torch.compile() some warnings get generated:
|
40 |
+
# "UserWarning: functional_call was passed multiple values for tied weights.
|
41 |
+
# This behavior is deprecated and will be an error in future versions"
|
42 |
+
# not 100% sure what this is, so far seems to be harmless. TODO investigate
|
43 |
+
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
|
44 |
+
|
45 |
+
# init all weights
|
46 |
+
self.apply(self._init_weights)
|
47 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
48 |
+
for pn, p in self.named_parameters():
|
49 |
+
if pn.endswith('c_proj.weight'):
|
50 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
51 |
+
|
52 |
+
# report number of parameters
|
53 |
+
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
|
54 |
+
|
55 |
+
def get_num_params(self, non_embedding=True):
|
56 |
+
"""
|
57 |
+
Return the number of parameters in the model.
|
58 |
+
For non-embedding count (default), the position embeddings get subtracted.
|
59 |
+
The token embeddings would too, except due to the parameter sharing these
|
60 |
+
params are actually used as weights in the final layer, so we include them.
|
61 |
+
"""
|
62 |
+
n_params = sum(p.numel() for p in self.parameters())
|
63 |
+
if non_embedding:
|
64 |
+
n_params -= self.transformer.wpe.weight.numel()
|
65 |
+
return n_params
|
66 |
+
|
67 |
+
|
68 |
+
def get_input_embeddings(self):
|
69 |
+
return self.wte
|
70 |
+
|
71 |
+
def set_input_embeddings(self, new_embeddings):
|
72 |
+
self.wte = new_embeddings
|
73 |
+
|
74 |
+
def forward(self, idx, targets=None, attn_mask= None, output_hidden_states: Optional[bool] = None, **kwargs):
|
75 |
+
device = idx.device
|
76 |
+
b, t = idx.size()
|
77 |
+
|
78 |
+
# attn_mask = _prepare_mask_(idx, b, eval)
|
79 |
+
# print("attention mask: ", attn_mask)
|
80 |
+
|
81 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
82 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
|
83 |
+
|
84 |
+
# forward the GPT model itself
|
85 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
86 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
|
87 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
88 |
+
for block in self.transformer.h:
|
89 |
+
x = block(x, attn_mask=attn_mask)
|
90 |
+
x = self.transformer.ln_f(x)
|
91 |
+
|
92 |
+
if targets is not None:
|
93 |
+
# if we are given some desired targets also calculate the loss
|
94 |
+
logits = self.lm_head(x)
|
95 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-100)
|
96 |
+
else:
|
97 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
98 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
99 |
+
loss = None
|
100 |
+
|
101 |
+
# return {"logits": logits, "loss": loss}
|
102 |
+
return CausalLMOutputWithPast(
|
103 |
+
loss=loss,
|
104 |
+
logits=logits,
|
105 |
+
hidden_states=x if output_hidden_states else None,
|
106 |
+
attentions= None,
|
107 |
+
)
|
108 |
+
|
109 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **kwargs):
|
110 |
+
# Default model inputs
|
111 |
+
model_inputs = {"idx": input_ids}
|
112 |
+
|
113 |
+
# Add attention mask if provided
|
114 |
+
if attention_mask is not None:
|
115 |
+
model_inputs["attn_mask"] = attention_mask
|
116 |
+
|
117 |
+
return model_inputs
|
118 |
+
|
119 |
+
|
120 |
+
@torch.no_grad()
|
121 |
+
def stream(self, idx, max_new_tokens, temperature=1.0, top_k=None,gen_mode="greedy"):
|
122 |
+
"""
|
123 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
124 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
125 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
126 |
+
"""
|
127 |
+
for _ in range(max_new_tokens):
|
128 |
+
# if the sequence context is growing too long we must crop it at block_size
|
129 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
130 |
+
# forward the model to get the logits for the index in the sequence
|
131 |
+
logits, _ = self(idx_cond, eval=True)
|
132 |
+
# pluck the logits at the final step and scale by desired temperature
|
133 |
+
logits = logits[:, -1, :] / temperature
|
134 |
+
# optionally crop the logits to only the top k options
|
135 |
+
if top_k is not None:
|
136 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
137 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
138 |
+
# apply softmax to convert logits to (normalized) probabilities
|
139 |
+
probs = F.softmax(logits, dim=-1)
|
140 |
+
# sample from the distribution
|
141 |
+
if gen_mode == 'greedy':
|
142 |
+
idx_next = torch.argmax(probs, dim=-1).unsqueeze(0)
|
143 |
+
|
144 |
+
else:
|
145 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
146 |
+
# print(idx_next.shape, idx.shape)
|
147 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
148 |
+
# append sampled index to the running sequence and continue
|
149 |
+
yield idx_next
|
150 |
+
|
151 |
+
|
152 |
+
def crop_block_size(self, block_size):
|
153 |
+
# model surgery to decrease the block size if necessary
|
154 |
+
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
|
155 |
+
# but want to use a smaller block size for some smaller, simpler model
|
156 |
+
assert block_size <= self.config.block_size
|
157 |
+
self.config.block_size = block_size
|
158 |
+
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
|
159 |
+
for block in self.transformer.h:
|
160 |
+
if hasattr(block.attn, 'bias'):
|
161 |
+
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
|
162 |
+
|
163 |
+
|
164 |
+
AutoConfig.register("nanogpt-j", GPTJXConfig)
|
165 |
+
AutoModel.register(GPTJXConfig,GPTJXForCausalLM)
|
166 |
+
AutoModelForCausalLM.register(GPTJXConfig, GPTJXForCausalLM)
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
from transformers import AutoTokenizer
|
171 |
+
|
172 |
+
tokenizer = AutoTokenizer.from_pretrained("BeardedMonster/SabiYarn")
|
173 |
+
input_ids = tokenizer("ba wo ni?", return_tensors="pt")["input_ids"]
|
174 |
+
targets = input_ids
|
175 |
+
|
176 |
+
# config = GPTJConfig()
|
177 |
+
# config.save_pretrained("gptj-config")
|
178 |
+
# new_config = GPTJ.from_pretrained("gptj-config")
|
179 |
+
# model = GPTJ(config)
|
180 |
+
# state_dict = torch.load('model.pt', map_location="cpu")
|
181 |
+
# model.load_state_dict(state_dict)
|
182 |
+
model = GPTJXForCausalLM.from_pretrained("/pretrainedmodel")
|
183 |
+
# model.save_pretrained("/pretrainedmodel")
|
184 |
+
outputs = model(input_ids, targets)
|
185 |
+
print(outputs)
|
186 |
+
output = model.generate(input_ids, max_new_tokens=100)
|
187 |
+
print(tokenizer.decode(output[0]))
|
188 |
+
# print(new_config)
|