BeastGokul commited on
Commit
ab3a24e
1 Parent(s): 0fcc30c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -174
README.md CHANGED
@@ -1,206 +1,70 @@
1
  ---
2
- base_model: BioMistral/BioMistral-7B
3
- library_name: peft
4
- license: apache-2.0
5
  language:
6
- - en
7
- pipeline_tag: text-generation
8
  ---
9
 
10
- # Model Card for Model ID
11
 
12
- <!-- Provide a quick summary of what the model is/does. -->
13
 
 
14
 
 
15
 
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
- <!-- Provide a longer summary of what this model is. -->
21
-
22
-
23
-
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
-
32
- ### Model Sources [optional]
33
 
34
- <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
 
40
  ## Uses
41
 
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
-
44
  ### Direct Use
45
 
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
-
48
- [More Information Needed]
49
-
50
- ### Downstream Use [optional]
51
-
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
-
54
- [More Information Needed]
55
 
56
  ### Out-of-Scope Use
57
 
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
-
62
- ## Bias, Risks, and Limitations
63
-
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
 
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
-
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
 
74
  ## How to Get Started with the Model
75
 
76
- Use the code below to get started with the model.
 
 
77
 
78
- [More Information Needed]
 
 
79
 
 
 
 
 
 
 
 
80
  ## Training Details
81
-
82
- ### Training Data
83
-
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
-
88
  ### Training Procedure
 
89
 
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
-
129
- [More Information Needed]
130
-
131
- ### Results
132
-
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
-
165
- [More Information Needed]
166
-
167
- #### Hardware
168
-
169
- [More Information Needed]
170
-
171
- #### Software
172
-
173
- [More Information Needed]
174
-
175
- ## Citation [optional]
176
-
177
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
-
179
- **BibTeX:**
180
-
181
- [More Information Needed]
182
-
183
- **APA:**
184
-
185
- [More Information Needed]
186
-
187
- ## Glossary [optional]
188
-
189
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
-
191
- [More Information Needed]
192
-
193
- ## More Information [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Authors [optional]
198
-
199
- [More Information Needed]
200
-
201
- ## Model Card Contact
202
 
203
- [More Information Needed]
204
- ### Framework versions
205
 
206
- - PEFT 0.13.2
 
 
1
  ---
2
+ base_model: BioMistral/BioMistral-7B
3
+ library_name: peft
4
+ license: apache-2.0
5
  language:
6
+ - en
7
+ pipeline_tag: text-generation
8
  ---
9
 
10
+ # Model Card for BioMistral-7B-Finetuned
11
 
12
+ ## Model Summary
13
 
14
+ **BioMistral-7B-Finetuned** is a biomedical language model adapted from the BioMistral-7B model. This fine-tuned model is tailored for biomedical question-answering tasks and optimized through LoRA (Low-Rank Adaptation) on a 4-bit quantized base. It is particularly useful for tasks that require understanding and generating biomedical text in English.
15
 
16
+ ---
17
 
18
  ## Model Details
19
 
20
  ### Model Description
21
 
22
+ This model was fine-tuned for biomedical applications, primarily focusing on enhancing accuracy in question-answering tasks within this domain.
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ - **Base Model**: BioMistral-7B
25
+ - **License**: apache-2.0
26
+ - **Fine-tuned for Task**: Biomedical Q&A, text generation
27
+ - **Quantization**: 4-bit precision with BitsAndBytes for efficient deployment
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ The model is suitable for biomedical question-answering and other related language generation tasks.
 
 
 
 
 
 
 
 
34
 
35
  ### Out-of-Scope Use
36
 
37
+ Not recommended for general-purpose NLP tasks outside the biomedical domain or for clinical decision-making.
 
 
 
 
 
 
 
 
38
 
39
+ ---
 
 
 
 
40
 
41
  ## How to Get Started with the Model
42
 
43
+ ```python
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+ from peft import PeftModel
46
 
47
+ # Load tokenizer and model
48
+ tokenizer = AutoTokenizer.from_pretrained("YourModelPath/BioMistral-7B-Finetuned")
49
+ model = AutoModelForCausalLM.from_pretrained("YourModelPath/BioMistral-7B-Finetuned")
50
 
51
+ # Example usage
52
+ input_text = "What are the symptoms of diabetes?"
53
+ inputs = tokenizer(input_text, return_tensors="pt")
54
+ outputs = model.generate(**inputs)
55
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
56
+ ```
57
+ ---
58
  ## Training Details
 
 
 
 
 
 
 
59
  ### Training Procedure
60
+ The model was fine-tuned using the LoRA (Low-Rank Adaptation) method, with a configuration set for biomedical question-answering.
61
 
62
+ Training Hyperparameters
63
+ Precision: 4-bit quantization with BitsAndBytes
64
+ Learning Rate: 2e-5
65
+ Batch Size: Effective batch size of 16 (4 per device, gradient accumulation steps of 4)
66
+ Number of Epochs: 3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
 
 
68
 
69
+ ## Framework versions
70
+ PEFT 0.13.2