--- library_name: transformers license: mit base_model: Davlan/afro-xlmr-base tags: - named-entity-recognition - kanuri - african-language - pii-detection - token-classification - generated_from_trainer datasets: - Beijuka/Multilingual_PII_NER_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: multilingual-Davlan/afro-xlmr-base-kanuri-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: Beijuka/Multilingual_PII_NER_dataset type: Beijuka/Multilingual_PII_NER_dataset args: 'split: train+validation+test' metrics: - name: Precision type: precision value: 0.9328358208955224 - name: Recall type: recall value: 0.9529860228716646 - name: F1 type: f1 value: 0.9428032683846638 - name: Accuracy type: accuracy value: 0.9857189865087199 --- # multilingual-Davlan/afro-xlmr-base-kanuri-ner-v1 This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the Beijuka/Multilingual_PII_NER_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0769 - Precision: 0.9328 - Recall: 0.9530 - F1: 0.9428 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 301 | 0.1158 | 0.8646 | 0.8610 | 0.8628 | 0.9683 | | 0.2058 | 2.0 | 602 | 0.0876 | 0.8848 | 0.9431 | 0.9130 | 0.9751 | | 0.2058 | 3.0 | 903 | 0.0854 | 0.9078 | 0.9143 | 0.9110 | 0.9783 | | 0.0658 | 4.0 | 1204 | 0.1092 | 0.8847 | 0.9383 | 0.9107 | 0.9755 | | 0.0491 | 5.0 | 1505 | 0.0881 | 0.9046 | 0.9431 | 0.9234 | 0.9782 | | 0.0491 | 6.0 | 1806 | 0.1227 | 0.9015 | 0.9323 | 0.9166 | 0.9770 | | 0.0298 | 7.0 | 2107 | 0.1005 | 0.9218 | 0.9461 | 0.9338 | 0.9805 | | 0.0298 | 8.0 | 2408 | 0.1454 | 0.8970 | 0.9395 | 0.9178 | 0.9774 | | 0.0164 | 9.0 | 2709 | 0.1301 | 0.9146 | 0.9305 | 0.9225 | 0.9789 | | 0.0089 | 10.0 | 3010 | 0.1297 | 0.9215 | 0.9425 | 0.9319 | 0.9806 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4