--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - named-entity-recognition - hausa - african-language - pii-detection - token-classification - generated_from_trainer datasets: - Beijuka/Multilingual_PII_NER_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: multilingual-google-bert/bert-base-multilingual-cased-hausa-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: Beijuka/Multilingual_PII_NER_dataset type: Beijuka/Multilingual_PII_NER_dataset args: 'split: train+validation+test' metrics: - name: Precision type: precision value: 0.9529745042492918 - name: Recall type: recall value: 0.9236683141131247 - name: F1 type: f1 value: 0.9380925822643614 - name: Accuracy type: accuracy value: 0.9788954787029192 --- # multilingual-google-bert/bert-base-multilingual-cased-hausa-ner-v1 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the Beijuka/Multilingual_PII_NER_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1237 - Precision: 0.9530 - Recall: 0.9237 - F1: 0.9381 - Accuracy: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 301 | 0.1502 | 0.8451 | 0.8843 | 0.8643 | 0.9526 | | 0.2112 | 2.0 | 602 | 0.1347 | 0.8573 | 0.9393 | 0.8964 | 0.9604 | | 0.2112 | 3.0 | 903 | 0.1241 | 0.8813 | 0.9398 | 0.9096 | 0.9668 | | 0.0847 | 4.0 | 1204 | 0.1770 | 0.8589 | 0.9460 | 0.9004 | 0.9640 | | 0.0619 | 5.0 | 1505 | 0.1295 | 0.9012 | 0.9146 | 0.9078 | 0.9673 | | 0.0619 | 6.0 | 1806 | 0.1502 | 0.9018 | 0.9254 | 0.9134 | 0.9683 | | 0.0394 | 7.0 | 2107 | 0.1801 | 0.8729 | 0.9506 | 0.9101 | 0.9661 | | 0.0394 | 8.0 | 2408 | 0.1807 | 0.9119 | 0.9321 | 0.9219 | 0.9705 | | 0.0236 | 9.0 | 2709 | 0.1660 | 0.9259 | 0.9187 | 0.9223 | 0.9719 | | 0.0124 | 10.0 | 3010 | 0.1878 | 0.8939 | 0.9496 | 0.9209 | 0.9705 | | 0.0124 | 11.0 | 3311 | 0.2095 | 0.8874 | 0.9486 | 0.9170 | 0.9693 | | 0.01 | 12.0 | 3612 | 0.2370 | 0.8814 | 0.9480 | 0.9135 | 0.9664 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4