File size: 3,665 Bytes
f6e9d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: transformers
license: mit
base_model: xlm-roberta-base
tags:
- named-entity-recognition
- lumasaba
- african-language
- pii-detection
- token-classification
- generated_from_trainer
datasets:
- Beijuka/Multilingual_PII_NER_dataset
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multilingual-xlm-roberta-base-lumasaba-ner-v1
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: Beijuka/Multilingual_PII_NER_dataset
      type: Beijuka/Multilingual_PII_NER_dataset
      args: 'split: train+validation+test'
    metrics:
    - name: Precision
      type: precision
      value: 0.9756862745098039
    - name: Recall
      type: recall
      value: 0.9510703363914373
    - name: F1
      type: f1
      value: 0.9632210607820364
    - name: Accuracy
      type: accuracy
      value: 0.9546409071818563
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# multilingual-xlm-roberta-base-lumasaba-ner-v1

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4011
- Precision: 0.9757
- Recall: 0.9511
- F1: 0.9632
- Accuracy: 0.9546

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 398  | 0.8255          | 0.8041    | 0.7424 | 0.7720 | 0.7204   |
| 1.3835        | 2.0   | 796  | 0.4975          | 0.8921    | 0.8348 | 0.8625 | 0.8448   |
| 0.5267        | 3.0   | 1194 | 0.3900          | 0.8921    | 0.8739 | 0.8829 | 0.8842   |
| 0.3019        | 4.0   | 1592 | 0.3742          | 0.9178    | 0.8919 | 0.9047 | 0.9065   |
| 0.3019        | 5.0   | 1990 | 0.2945          | 0.9358    | 0.9358 | 0.9358 | 0.9314   |
| 0.1825        | 6.0   | 2388 | 0.3457          | 0.9406    | 0.9303 | 0.9354 | 0.9275   |
| 0.1222        | 7.0   | 2786 | 0.3336          | 0.9418    | 0.9507 | 0.9462 | 0.9421   |
| 0.0787        | 8.0   | 3184 | 0.4745          | 0.9610    | 0.9264 | 0.9434 | 0.9374   |
| 0.0563        | 9.0   | 3582 | 0.4344          | 0.9472    | 0.9421 | 0.9446 | 0.9340   |
| 0.0563        | 10.0  | 3980 | 0.3393          | 0.9594    | 0.9616 | 0.9605 | 0.9481   |
| 0.0528        | 11.0  | 4378 | 0.4272          | 0.9518    | 0.9287 | 0.9402 | 0.9305   |
| 0.0356        | 12.0  | 4776 | 0.3165          | 0.9708    | 0.9632 | 0.9670 | 0.9580   |
| 0.0283        | 13.0  | 5174 | 0.3633          | 0.9629    | 0.9546 | 0.9587 | 0.9533   |
| 0.0254        | 14.0  | 5572 | 0.3616          | 0.9490    | 0.9616 | 0.9553 | 0.9520   |
| 0.0254        | 15.0  | 5970 | 0.3528          | 0.9490    | 0.9624 | 0.9557 | 0.9498   |


### Framework versions

- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4