{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbcf1b6f180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689022024116316489, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0MNb1cx6Q/WRFHvr7eCb9hJsK9ArMzPAAAAAAAAAAATbs1PVzrd7o6jCC54tYYtFIBtrmjyTs4AACAPwAAgD8aZnC9CjdquarOgjbicbiwdHEavOpxnLUAAIA/AACAP1bznT6NK3o/Ph/NPk7ZHb/WRuE+ZiSfPQAAAAAAAAAA4K80voSOqD/VmPG+9SUXv/7wdL7SdvO9AAAAAAAAAABa87u9jGKPPlUG3j1BNFy+vFcVu44J5TwAAAAAAAAAAGY1vb1/6sE/Atcev5cRIT5Peue7SxIqvgAAAAAAAAAAZnZ4O0ijjLo3zhO4b+AHsz2JwToHmSs3AACAPwAAgD+GYge+XWaPPtd1xj0TN52+Sg/DvL1ooT0AAAAAAAAAAHOJtr0BRkg+x3I2Pmtbi77lidc9eIUkPAAAAAAAAAAAGv0SPQtXlj3OR6y9otJyvrAAxT32dte9AAAAAAAAAAAzJ0G87In5uS6SvrnJwce0lCBEO9Zr3TgAAIA/AACAP5rd1zv2vE+6uo3qOjMOqTVOQI26e2cKugAAgD8AAIA/TcxCvaQRNrvT51U+SVddvofckjz5NAw9AAAAAAAAgD/7WtO+pcuKP3xZx77SrSS/oefKvmsZ3zsAAAAAAAAAAE3Bmb3DVUO66WMrOq6DFTabKQa7Di0QNQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHffRzBAOeMAWyUTS8CjAF0lEdAkqfKqCHymXV9lChoBkdAb/X+cYqG12gHTWQBaAhHQJKpBPl+3H91fZQoaAZHQG3b6kZaV2RoB03SAWgIR0CSqcAuqWC3dX2UKGgGR0Bxlu+Yc/+saAdL+2gIR0CSqccNpdrwdX2UKGgGR0BxRWSPluFYaAdNXgFoCEdAkr/oX9BKMHV9lChoBkdAbnhDLr5ZbWgHTc0BaAhHQJLAzoB7u2J1fZQoaAZHQHL7dz4k/r1oB02MAWgIR0CSwaa2nbZfdX2UKGgGR0BwoN4NZvDQaAdN9AFoCEdAksLa+i8Fp3V9lChoBkdAcuFsa86FNGgHTf8BaAhHQJLDTt6X0Gx1fZQoaAZHQHF5Bx1gYxdoB00NAWgIR0CSyAZ/0/W2dX2UKGgGR0BwIDEbYK6XaAdNBgFoCEdAksiFb7j1f3V9lChoBkdAcS1YzSCvo2gHTRgBaAhHQJLJQsjFAFB1fZQoaAZHQHNwFkDp1RtoB01NAWgIR0CSyWkIHC40dX2UKGgGR0Bv5mJBPbfxaAdNCwFoCEdAksmsWKuSwHV9lChoBkdAcdzJiAlOXWgHTQgCaAhHQJLK7YUWVNZ1fZQoaAZHQHI+bVawD/5oB00cA2gIR0CSy0SQ5myxdX2UKGgGR0Bw1DIwM6RyaAdNoQFoCEdAksu3VPN3XHV9lChoBkdAZHENfgJkXmgHTegDaAhHQJLOH2dupCN1fZQoaAZHQG+YTMaCL/FoB01ZAWgIR0CSzlJZ4fOldX2UKGgGR0BuPDWNFSbZaAdNOQFoCEdAks7VI/Z/TnV9lChoBkdAcpKq5byH22gHTUUBaAhHQJLO0Nrj5sV1fZQoaAZHQHGKqIeo1k1oB03eA2gIR0CS0RDh99c9dX2UKGgGR0BwsdyOq//OaAdNJwNoCEdAktFV1bJOnHV9lChoBkdAcvAkBS1ma2gHTeQBaAhHQJLR4oQWepZ1fZQoaAZHQHA2hCpm29doB00dAWgIR0CS0eq814xDdX2UKGgGR0Bw9VBUrCm/aAdNFAFoCEdAktKJkPMB63V9lChoBkdAbXxzp5eJHmgHTbACaAhHQJLVN7SiM5x1fZQoaAZHQHL+Y5cTrVxoB02EAWgIR0CS1bgctGutdX2UKGgGR0BxF/amGdqdaAdNVQFoCEdAktakSh8IA3V9lChoBkdAcj4LvCuU2WgHTRoBaAhHQJLXhZpztC11fZQoaAZHQHFRFIVdonNoB02lAWgIR0CS1+5BTn7pdX2UKGgGR0Bw7km1IAfdaAdNSAFoCEdAktkDyBkI5nV9lChoBkdAcK7zr/sE7mgHTTkBaAhHQJLZPuZ1FH91fZQoaAZHQHJP6zmfXf9oB0v5aAhHQJLZ1jQRf4R1fZQoaAZHQHNyGU4aP0ZoB0vzaAhHQJLaT24/eLx1fZQoaAZHQHGvH27FsHloB00bAWgIR0CS2rus90RwdX2UKGgGR0ByYqjvd/KAaAdNyAFoCEdAktsrQb+98XV9lChoBkdAbZ9shxHXmWgHTXsBaAhHQJLbhJcxCY11fZQoaAZHQHHtQFHJ9y9oB002AWgIR0CS3GczZYgadX2UKGgGR0BzFeLR8c+8aAdL7mgIR0CS3UDcuanadX2UKGgGR0BwEEcsDnvEaAdNVwJoCEdAkt2Dt5UtI3V9lChoBkdAcCfFC9h7V2gHS+9oCEdAkt5yylenh3V9lChoBkdAcz75xBE8aGgHTW0BaAhHQJLen6yjYZl1fZQoaAZHQHGB4EwFkhBoB0vjaAhHQJLe0+aBqbl1fZQoaAZHQHHDePeYUnJoB0vuaAhHQJLfX7ZWaMJ1fZQoaAZHQHFgvXGwRoRoB00+AWgIR0CS393j+717dX2UKGgGR0By99aFEiMYaAdNAwFoCEdAkuF4JE6T4nV9lChoBkdAcxWyon8baWgHTSgBaAhHQJL4roicG1R1fZQoaAZHQHBO7EpAlfJoB038AmgIR0CS+NBJI1+BdX2UKGgGR0Bxh1vJiiItaAdNHgFoCEdAkvjMTviLl3V9lChoBkdAcBUtf5ULlWgHTTMBaAhHQJL56HzpX6t1fZQoaAZHQG994sNDtw9oB00jAWgIR0CS+l7gbZOBdX2UKGgGR0BvPrGPxQSBaAdNiwFoCEdAkvp0WRA8jnV9lChoBkdAcDkGY8dPtWgHTYsBaAhHQJL7sTewcHZ1fZQoaAZHQHGiPYJ3PiVoB00qAWgIR0CS+/YL9deIdX2UKGgGR0ByqTWNFSbZaAdNuAFoCEdAkvwyFfzBh3V9lChoBkdAcvbFkQPI4mgHTREBaAhHQJL8XwSamXR1fZQoaAZHQHKsWEoOQQtoB01PAWgIR0CS/MsOG0u2dX2UKGgGR0Bw4rO4XoC/aAdNDwFoCEdAkv2XnuAqeHV9lChoBkdAcGs+4smOVGgHTUcBaAhHQJL9r5+H8CR1fZQoaAZHQHAshqO938poB01FAWgIR0CS/feoDPnkdX2UKGgGR0ByPLaIvalDaAdL7GgIR0CS/+na37UHdX2UKGgGR8AUjkJa7mMgaAdLoWgIR0CTAXDCxeLOdX2UKGgGR0BxYwPbwjMWaAdNCwFoCEdAkwLIVmBe5XV9lChoBkdAcS504R28qWgHTZEBaAhHQJMDj8Lront1fZQoaAZHQHAjcd1dPcloB01XAWgIR0CTA8Hvc8DCdX2UKGgGR0Bw7M1DSgGsaAdL62gIR0CTA8GKyfL+dX2UKGgGR0Bw/0zZYgaFaAdNfwFoCEdAkwVggDA8CHV9lChoBkdAcCN0Xxe9jGgHTYMBaAhHQJMGt7ojfN11fZQoaAZHQHGDMfms/6hoB00FAWgIR0CTBvEIPbwjdX2UKGgGR0ByCeEoOQQuaAdNEQFoCEdAkwb3/giu+3V9lChoBkdAcgYJkoWpImgHTYkBaAhHQJMHYqaw2VF1fZQoaAZHQHCPNRJmNBFoB00yAWgIR0CTB+nrpqyodX2UKGgGR0Ah/w4KhL5AaAdLnWgIR0CTCRlVcUuddX2UKGgGR0BykR+hGpdbaAdNoAFoCEdAkwlYfSx7iXV9lChoBkdAclQEiMYMv2gHTRYBaAhHQJMJx+z+m3x1fZQoaAZHQG/22pZOi35oB0v5aAhHQJMKOtknTiN1fZQoaAZHQHD42JaaCtloB022AWgIR0CTCj11GLDRdX2UKGgGR0Bymbel9BrvaAdNxQJoCEdAkwtY4+8oQXV9lChoBkdAcSldH2AXmGgHTekBaAhHQJMLz6i0v5B1fZQoaAZHQHFHH+VC5VhoB00RAWgIR0CTC9ATqSowdX2UKGgGR0ByDAdo371qaAdNEQFoCEdAkwx1o6CDmXV9lChoBkdAcbHJ2MbWE2gHTSABaAhHQJMM4eOn2qV1fZQoaAZHQEmQ3fhuO0doB0uuaAhHQJMM7vttygh1fZQoaAZHQHHwjIRywOhoB00YAWgIR0CTDdCFK02MdX2UKGgGR0BwRhxMnJDFaAdNHwFoCEdAkw8MZgogFHV9lChoBkdAcp/pmVZ9u2gHTR8BaAhHQJMPPXFtKqZ1fZQoaAZHQG8q5Q53kghoB00hAWgIR0CTD0kiUxEfdX2UKGgGR0BycdYbKifyaAdNHgFoCEdAkw+NvOyE+XV9lChoBkdAcSWf2saKk2gHS+hoCEdAkw+6Eal1sHV9lChoBkdAcTodB0IToWgHS+toCEdAkxCQgxJumHV9lChoBkdAc2wRdhRZU2gHTSwBaAhHQJMRUnVoYel1fZQoaAZHQHGup9ZzPrxoB007AWgIR0CTEmIV/MGHdX2UKGgGR0ByOG8XenAJaAdNBQFoCEdAkxJyg5BC2XV9lChoBkdAcSmqZc9nsmgHTTgBaAhHQJMSuPXCj1x1fZQoaAZHQHISyOq//NtoB004AWgIR0CTFFMspXp4dX2UKGgGR0B0K4pAlfJFaAdNGgFoCEdAkxSvwiJO33V9lChoBkdAcf4Et/WlM2gHS9toCEdAkxUksSTQmnV9lChoBkdAchr7VawD/2gHTRIBaAhHQJMVhMajveB1fZQoaAZHQG7r5YPoV21oB0vqaAhHQJMV1fLLZBd1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}