BenLearningRL commited on
Commit
cecf557
·
1 Parent(s): 940362e

Created an RL agent using PPO to solve the LunarLander-v2 environment

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.73 +/- 15.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff43562680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff43562710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff435627a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff43562830>", "_build": "<function ActorCriticPolicy._build at 0x7eff435628c0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff43562950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff435629e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff43562a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff43562b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff43562b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff43562c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff43562cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eff43506a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699960789174196176, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMkPD7IfdG8ZOO2O5f3xbp5YDa+ThA9uwAAgD8AAIA/Zni7Pftf7juqEc+82g8ZvqkARTvI5tE8AAAAAAAAAADAjDc+ARypvE79dTkd5Ke3JLgZvnxUprgAAIA/AACAP22dRr7PJpI/y3qivus5I79YWHW+O8abvQAAAAAAAAAAcwP3PWyfo7sNQH69xuRZvOfXCj2XBjs9AACAPwAAgD+1Pay+OX4MP/lfET4VPc++AakRvuir+j0AAAAAAAAAAA1Woz2zD1k/WX+APcnyCL/+Njw9/OgAPQAAAAAAAAAAeqIhPjSwjD/rMWs+B6E7v8GYHz7Wttk9AAAAAAAAAACTQi8+3JlJvGaGgTuKgMO5rXS0vWbDn7oAAIA/AACAP2Y9db2D/HU/ss6fvUDYIL+RN8y927pHPQAAAAAAAAAADUYKvq6l1LqTN4A8AsaQPLGAVTuS3XE9AACAPwAAgD8rbIG+mupGPyt7Ib6wWAy/bLWAvqVnED4AAAAAAAAAADMnszsWuTs9DjUCPsRjVb4dfKo9uKkovQAAAAAAAAAAIGo0Pjttsry0RgE8EuOhunOAHb77Knu7AACAPwAAgD+ayTw9cBg2P8JUmD0ZDv2+x+EbPajN/TkAAAAAAAAAAHrPLT6Pf1q8E5CYOgUDr7hKUMe9exXBuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+F6ews5GWMAWyUS9OMAXSUR0ClavQD/2kBdX2UKGgGR0BxcWk0rK/3aAdL32gIR0Clay1OsT37dX2UKGgGR0Bvqu/i5uqFaAdL0GgIR0ClbPDbah6CdX2UKGgGR0BxTOkWRA8kaAdLwmgIR0ClbaxL9MsZdX2UKGgGR0BjmpL7GecyaAdN6ANoCEdApW4AkiUxEnV9lChoBkdAcE565Xlr/WgHS91oCEdApW4+q94/vHV9lChoBkdAcNsmY0EX+GgHS99oCEdApW8K7ulXR3V9lChoBkdAcUWj2zv7WWgHS+1oCEdApW8kNFz+33V9lChoBkdAcbHD0lJHy2gHTQ0BaAhHQKVvpMDfWMF1fZQoaAZHQHDZssH0K7ZoB0viaAhHQKVwSV5a/yp1fZQoaAZHQHHn4zeoDPpoB0vMaAhHQKVx0gElme11fZQoaAZHQG2r495hScdoB0vTaAhHQKVzawD/2kB1fZQoaAZHQHFJacd5prVoB0viaAhHQKVzhK2a2F51fZQoaAZHQHEXVOKwY+BoB0v4aAhHQKVzvA+pwS91fZQoaAZHQGSa8La24NJoB03oA2gIR0Clc+l/H5rQdX2UKGgGR0BgIyzw+dK/aAdN6ANoCEdApXRVZid8RnV9lChoBkdAcn7IWxhUi2gHS9doCEdApXRhLCemN3V9lChoBkdAZmx0JWvKU2gHTegDaAhHQKV09rP+n651fZQoaAZHQHL8NRNyo4xoB0vXaAhHQKV1F4gzP8h1fZQoaAZHQHIpSkoF3ZBoB00GAWgIR0ClddGHP/rCdX2UKGgGR0BkHeu5jH4oaAdN6ANoCEdApXZBppN9IHV9lChoBkdAcv/5J9RaYGgHS+poCEdApXZfeDWbw3V9lChoBkdAZfatK7I1cmgHTegDaAhHQKV28g/Tspp1fZQoaAZHQHIxBgmZ3LVoB0veaAhHQKV3gzSCvox1fZQoaAZHQHDnvDpC8e1oB0vKaAhHQKV4lCvX9R91fZQoaAZHQG9Q1Kf4AS5oB0vHaAhHQKV4m+EAYHh1fZQoaAZHQHDy0HY6GQFoB0vKaAhHQKV48FbmlqJ1fZQoaAZHQHF9bOeJ53VoB0vDaAhHQKV5aPDpC8h1fZQoaAZHQG4MXC9AX2xoB0vRaAhHQKV6baEi+td1fZQoaAZHQHAYrhisnzBoB0v0aAhHQKV61Kifxtp1fZQoaAZHQHFla/IsAedoB0vAaAhHQKV61vc8DCB1fZQoaAZHQHFN+4G2TgVoB0vhaAhHQKV7CSOinHh1fZQoaAZHQGJECaRZED1oB03oA2gIR0Cle54xtYSydX2UKGgGR0Bu8PNHH3lCaAdLyWgIR0Cle6SuhbnpdX2UKGgGR0Bx0okgOjIraAdL6GgIR0ClfFYqG1x9dX2UKGgGR0Bv2HVLBbfQaAdLxGgIR0ClfM2nsLOSdX2UKGgGR0Bwkdm6GxlhaAdLymgIR0ClfihFEy+IdX2UKGgGR0BxbG5CngpCaAdL0WgIR0ClfmOAqd6LdX2UKGgGR0Bu0BZZB9kSaAdLyWgIR0Clfw8afjCIdX2UKGgGR0Byysoa1kUcaAdL9WgIR0Clf+Gmk30gdX2UKGgGR0BvGp3Roh6jaAdL0GgIR0ClgGyD7IkrdX2UKGgGR0ByEQoPTXrdaAdLxWgIR0ClgIk7wKBvdX2UKGgGR0BwHDAVO9FnaAdL12gIR0ClgUPzvqkedX2UKGgGR0BwXv8aXKKYaAdLzWgIR0ClgaBkZrHmdX2UKGgGR0BwF4oZydWiaAdL1mgIR0Clged07r9mdX2UKGgGR0Bw+6qS5iEyaAdLvWgIR0Clge5Huqm1dX2UKGgGR0BlHwOFxn3+aAdN6ANoCEdApYLSOYIBzXV9lChoBkdAcktwV0tAcGgHS89oCEdApYLpl+Vkc3V9lChoBkdAcEVS/TLGJmgHS91oCEdApYRm+/QBxXV9lChoBkdAcPiQjlgc+GgHS8VoCEdApYR/1e0G/3V9lChoBkdAc0gChew9q2gHS+FoCEdApYSpSHdoFnV9lChoBkdAVi2XOW0JGGgHTegDaAhHQKWEu5eZ5Rl1fZQoaAZHQHFZ9M495hVoB0vCaAhHQKWE82Q4jr11fZQoaAZHQHFPkkOZssRoB0vHaAhHQKWFYTHsC1Z1fZQoaAZHQG8KN/4IrvtoB0vTaAhHQKWFovYe1a51fZQoaAZHQHLK7Qb+98JoB0vAaAhHQKWFvW8yvcJ1fZQoaAZHQHFrudbxEv1oB0voaAhHQKWGpdZ7ojh1fZQoaAZHQHJ3S4z7/GVoB0vqaAhHQKWG5G4I8hd1fZQoaAZHQHIKVTWGyopoB0vSaAhHQKWHC4iosI51fZQoaAZHQHGUsdo371toB0vbaAhHQKWHR91EE1V1fZQoaAZHQHBOJ9qk/KRoB0vUaAhHQKWIXeruIAR1fZQoaAZHQHC9Y2fkFOhoB0vJaAhHQKWIdmmLtNV1fZQoaAZHQHDKUcXFcY9oB0vyaAhHQKWJFpDeCTV1fZQoaAZHQG51SOq//NtoB01WA2gIR0CliRvv8ZUDdX2UKGgGR0BwdJvBJqZdaAdNXAFoCEdApYklpPAO8XV9lChoBkdAcSAe5nUUf2gHS95oCEdApYmZ/7SApnV9lChoBkdAcGEhFEy+H2gHS9RoCEdApYm0e8wpOXV9lChoBkdAccORmseXA2gHS/9oCEdApYnKSowVTXV9lChoBkdAb5N8ohIOH2gHS8FoCEdApYqc4BFNL3V9lChoBkdAclQS+xnnMmgHTQYBaAhHQKWKrorWiDd1fZQoaAZHQHDNkmMOwxFoB0vOaAhHQKWLPOhTOxB1fZQoaAZHQHM3b876pHZoB00GAWgIR0Cli7ZYxL00dX2UKGgGR0ByIJeWv8qGaAdL0mgIR0CljHEDp1RtdX2UKGgGR0Bv3ZRuTA32aAdL42gIR0CljOnyEtdzdX2UKGgGR0Bw310/4ZdfaAdLx2gIR0CljPsMiKR/dX2UKGgGR0Bw3iO2iL2paAdL32gIR0CljXZaFEiMdX2UKGgGR0BvK/o9s7+2aAdL4GgIR0CljiM8gZCOdX2UKGgGR0BvEzmdRR/FaAdL6mgIR0Cljj2Cdz4ldX2UKGgGR0BhYg0Kqn3taAdN6ANoCEdApY5JqwhW53V9lChoBkdAcRuBQemvXGgHS75oCEdApY558MNMG3V9lChoBkdAcstN34bjtGgHTQIBaAhHQKWO4aOPvKF1fZQoaAZHQHNiBa9sabZoB01EAWgIR0Clj4NLL6k7dX2UKGgGR0BxRwVxjriVaAdL8WgIR0ClkKiXY150dX2UKGgGR0Bwo0iGFi8WaAdL2GgIR0ClkOAccU/OdX2UKGgGR0By5vFo+OfeaAdNFgFoCEdApZDtqQA+6nV9lChoBkdAcZe8qnWJ8GgHS8poCEdApZEMDuBtlHV9lChoBkdAYagWGATZhGgHTegDaAhHQKWRRXAdn011fZQoaAZHQHH/k6T4cm1oB0vqaAhHQKWRtLIPsiV1fZQoaAZHQHCUncclw99oB0vbaAhHQKWR1iJfpll1fZQoaAZHQG/dx33YcvNoB0vVaAhHQKWSeM4LkS51fZQoaAZHQHE2TENvwVloB0vqaAhHQKWS127FsHl1fZQoaAZHQHBqSuhbnoxoB0vOaAhHQKWS7tnf2sd1fZQoaAZHQHFmRsdkrgBoB0vFaAhHQKWTXUVi4KB1fZQoaAZHQHFV5Qgs9SxoB0vLaAhHQKWUgHbAUL51fZQoaAZHQHLw5jUd7v5oB0vbaAhHQKWU/LV4HHF1fZQoaAZHQHGBhUaQ3gloB0vbaAhHQKWVD+RYA811fZQoaAZHQHE9UbgjyFxoB0vRaAhHQKWVLzkIX0p1fZQoaAZHQHFPkka/ATJoB0uyaAhHQKWVL05EMLF1fZQoaAZHQHBqaxs2vStoB0vFaAhHQKWVXl8PWhB1fZQoaAZHQHEb88La24NoB0vpaAhHQKWVZC+De0p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 327, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63060b110128fa2098d537fb0d11ff7be514873baab3831e1cff6ff9722352d1
3
+ size 147949
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff43562680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff43562710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff435627a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff43562830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eff435628c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eff43562950>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff435629e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff43562a70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eff43562b00>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff43562b90>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff43562c20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff43562cb0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7eff43506a00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1699960789174196176,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMkPD7IfdG8ZOO2O5f3xbp5YDa+ThA9uwAAgD8AAIA/Zni7Pftf7juqEc+82g8ZvqkARTvI5tE8AAAAAAAAAADAjDc+ARypvE79dTkd5Ke3JLgZvnxUprgAAIA/AACAP22dRr7PJpI/y3qivus5I79YWHW+O8abvQAAAAAAAAAAcwP3PWyfo7sNQH69xuRZvOfXCj2XBjs9AACAPwAAgD+1Pay+OX4MP/lfET4VPc++AakRvuir+j0AAAAAAAAAAA1Woz2zD1k/WX+APcnyCL/+Njw9/OgAPQAAAAAAAAAAeqIhPjSwjD/rMWs+B6E7v8GYHz7Wttk9AAAAAAAAAACTQi8+3JlJvGaGgTuKgMO5rXS0vWbDn7oAAIA/AACAP2Y9db2D/HU/ss6fvUDYIL+RN8y927pHPQAAAAAAAAAADUYKvq6l1LqTN4A8AsaQPLGAVTuS3XE9AACAPwAAgD8rbIG+mupGPyt7Ib6wWAy/bLWAvqVnED4AAAAAAAAAADMnszsWuTs9DjUCPsRjVb4dfKo9uKkovQAAAAAAAAAAIGo0Pjttsry0RgE8EuOhunOAHb77Knu7AACAPwAAgD+ayTw9cBg2P8JUmD0ZDv2+x+EbPajN/TkAAAAAAAAAAHrPLT6Pf1q8E5CYOgUDr7hKUMe9exXBuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+F6ews5GWMAWyUS9OMAXSUR0ClavQD/2kBdX2UKGgGR0BxcWk0rK/3aAdL32gIR0Clay1OsT37dX2UKGgGR0Bvqu/i5uqFaAdL0GgIR0ClbPDbah6CdX2UKGgGR0BxTOkWRA8kaAdLwmgIR0ClbaxL9MsZdX2UKGgGR0BjmpL7GecyaAdN6ANoCEdApW4AkiUxEnV9lChoBkdAcE565Xlr/WgHS91oCEdApW4+q94/vHV9lChoBkdAcNsmY0EX+GgHS99oCEdApW8K7ulXR3V9lChoBkdAcUWj2zv7WWgHS+1oCEdApW8kNFz+33V9lChoBkdAcbHD0lJHy2gHTQ0BaAhHQKVvpMDfWMF1fZQoaAZHQHDZssH0K7ZoB0viaAhHQKVwSV5a/yp1fZQoaAZHQHHn4zeoDPpoB0vMaAhHQKVx0gElme11fZQoaAZHQG2r495hScdoB0vTaAhHQKVzawD/2kB1fZQoaAZHQHFJacd5prVoB0viaAhHQKVzhK2a2F51fZQoaAZHQHEXVOKwY+BoB0v4aAhHQKVzvA+pwS91fZQoaAZHQGSa8La24NJoB03oA2gIR0Clc+l/H5rQdX2UKGgGR0BgIyzw+dK/aAdN6ANoCEdApXRVZid8RnV9lChoBkdAcn7IWxhUi2gHS9doCEdApXRhLCemN3V9lChoBkdAZmx0JWvKU2gHTegDaAhHQKV09rP+n651fZQoaAZHQHL8NRNyo4xoB0vXaAhHQKV1F4gzP8h1fZQoaAZHQHIpSkoF3ZBoB00GAWgIR0ClddGHP/rCdX2UKGgGR0BkHeu5jH4oaAdN6ANoCEdApXZBppN9IHV9lChoBkdAcv/5J9RaYGgHS+poCEdApXZfeDWbw3V9lChoBkdAZfatK7I1cmgHTegDaAhHQKV28g/Tspp1fZQoaAZHQHIxBgmZ3LVoB0veaAhHQKV3gzSCvox1fZQoaAZHQHDnvDpC8e1oB0vKaAhHQKV4lCvX9R91fZQoaAZHQG9Q1Kf4AS5oB0vHaAhHQKV4m+EAYHh1fZQoaAZHQHDy0HY6GQFoB0vKaAhHQKV48FbmlqJ1fZQoaAZHQHF9bOeJ53VoB0vDaAhHQKV5aPDpC8h1fZQoaAZHQG4MXC9AX2xoB0vRaAhHQKV6baEi+td1fZQoaAZHQHAYrhisnzBoB0v0aAhHQKV61Kifxtp1fZQoaAZHQHFla/IsAedoB0vAaAhHQKV61vc8DCB1fZQoaAZHQHFN+4G2TgVoB0vhaAhHQKV7CSOinHh1fZQoaAZHQGJECaRZED1oB03oA2gIR0Cle54xtYSydX2UKGgGR0Bu8PNHH3lCaAdLyWgIR0Cle6SuhbnpdX2UKGgGR0Bx0okgOjIraAdL6GgIR0ClfFYqG1x9dX2UKGgGR0Bv2HVLBbfQaAdLxGgIR0ClfM2nsLOSdX2UKGgGR0Bwkdm6GxlhaAdLymgIR0ClfihFEy+IdX2UKGgGR0BxbG5CngpCaAdL0WgIR0ClfmOAqd6LdX2UKGgGR0Bu0BZZB9kSaAdLyWgIR0Clfw8afjCIdX2UKGgGR0Byysoa1kUcaAdL9WgIR0Clf+Gmk30gdX2UKGgGR0BvGp3Roh6jaAdL0GgIR0ClgGyD7IkrdX2UKGgGR0ByEQoPTXrdaAdLxWgIR0ClgIk7wKBvdX2UKGgGR0BwHDAVO9FnaAdL12gIR0ClgUPzvqkedX2UKGgGR0BwXv8aXKKYaAdLzWgIR0ClgaBkZrHmdX2UKGgGR0BwF4oZydWiaAdL1mgIR0Clged07r9mdX2UKGgGR0Bw+6qS5iEyaAdLvWgIR0Clge5Huqm1dX2UKGgGR0BlHwOFxn3+aAdN6ANoCEdApYLSOYIBzXV9lChoBkdAcktwV0tAcGgHS89oCEdApYLpl+Vkc3V9lChoBkdAcEVS/TLGJmgHS91oCEdApYRm+/QBxXV9lChoBkdAcPiQjlgc+GgHS8VoCEdApYR/1e0G/3V9lChoBkdAc0gChew9q2gHS+FoCEdApYSpSHdoFnV9lChoBkdAVi2XOW0JGGgHTegDaAhHQKWEu5eZ5Rl1fZQoaAZHQHFZ9M495hVoB0vCaAhHQKWE82Q4jr11fZQoaAZHQHFPkkOZssRoB0vHaAhHQKWFYTHsC1Z1fZQoaAZHQG8KN/4IrvtoB0vTaAhHQKWFovYe1a51fZQoaAZHQHLK7Qb+98JoB0vAaAhHQKWFvW8yvcJ1fZQoaAZHQHFrudbxEv1oB0voaAhHQKWGpdZ7ojh1fZQoaAZHQHJ3S4z7/GVoB0vqaAhHQKWG5G4I8hd1fZQoaAZHQHIKVTWGyopoB0vSaAhHQKWHC4iosI51fZQoaAZHQHGUsdo371toB0vbaAhHQKWHR91EE1V1fZQoaAZHQHBOJ9qk/KRoB0vUaAhHQKWIXeruIAR1fZQoaAZHQHC9Y2fkFOhoB0vJaAhHQKWIdmmLtNV1fZQoaAZHQHDKUcXFcY9oB0vyaAhHQKWJFpDeCTV1fZQoaAZHQG51SOq//NtoB01WA2gIR0CliRvv8ZUDdX2UKGgGR0BwdJvBJqZdaAdNXAFoCEdApYklpPAO8XV9lChoBkdAcSAe5nUUf2gHS95oCEdApYmZ/7SApnV9lChoBkdAcGEhFEy+H2gHS9RoCEdApYm0e8wpOXV9lChoBkdAccORmseXA2gHS/9oCEdApYnKSowVTXV9lChoBkdAb5N8ohIOH2gHS8FoCEdApYqc4BFNL3V9lChoBkdAclQS+xnnMmgHTQYBaAhHQKWKrorWiDd1fZQoaAZHQHDNkmMOwxFoB0vOaAhHQKWLPOhTOxB1fZQoaAZHQHM3b876pHZoB00GAWgIR0Cli7ZYxL00dX2UKGgGR0ByIJeWv8qGaAdL0mgIR0CljHEDp1RtdX2UKGgGR0Bv3ZRuTA32aAdL42gIR0CljOnyEtdzdX2UKGgGR0Bw310/4ZdfaAdLx2gIR0CljPsMiKR/dX2UKGgGR0Bw3iO2iL2paAdL32gIR0CljXZaFEiMdX2UKGgGR0BvK/o9s7+2aAdL4GgIR0CljiM8gZCOdX2UKGgGR0BvEzmdRR/FaAdL6mgIR0Cljj2Cdz4ldX2UKGgGR0BhYg0Kqn3taAdN6ANoCEdApY5JqwhW53V9lChoBkdAcRuBQemvXGgHS75oCEdApY558MNMG3V9lChoBkdAcstN34bjtGgHTQIBaAhHQKWO4aOPvKF1fZQoaAZHQHNiBa9sabZoB01EAWgIR0Clj4NLL6k7dX2UKGgGR0BxRwVxjriVaAdL8WgIR0ClkKiXY150dX2UKGgGR0Bwo0iGFi8WaAdL2GgIR0ClkOAccU/OdX2UKGgGR0By5vFo+OfeaAdNFgFoCEdApZDtqQA+6nV9lChoBkdAcZe8qnWJ8GgHS8poCEdApZEMDuBtlHV9lChoBkdAYagWGATZhGgHTegDaAhHQKWRRXAdn011fZQoaAZHQHH/k6T4cm1oB0vqaAhHQKWRtLIPsiV1fZQoaAZHQHCUncclw99oB0vbaAhHQKWR1iJfpll1fZQoaAZHQG/dx33YcvNoB0vVaAhHQKWSeM4LkS51fZQoaAZHQHE2TENvwVloB0vqaAhHQKWS127FsHl1fZQoaAZHQHBqSuhbnoxoB0vOaAhHQKWS7tnf2sd1fZQoaAZHQHFmRsdkrgBoB0vFaAhHQKWTXUVi4KB1fZQoaAZHQHFV5Qgs9SxoB0vLaAhHQKWUgHbAUL51fZQoaAZHQHLw5jUd7v5oB0vbaAhHQKWU/LV4HHF1fZQoaAZHQHGBhUaQ3gloB0vbaAhHQKWVD+RYA811fZQoaAZHQHE9UbgjyFxoB0vRaAhHQKWVLzkIX0p1fZQoaAZHQHFPkka/ATJoB0uyaAhHQKWVL05EMLF1fZQoaAZHQHBqaxs2vStoB0vFaAhHQKWVXl8PWhB1fZQoaAZHQHEb88La24NoB0vpaAhHQKWVZC+De0p1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 327,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:231f7a0d67e3d2cdb18857dfb737b846b8411c60ed2ac468bb87647b424f9944
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cd6dab47b69704acf333ad1f5968802dc551d857cedb2f03c09549e0ba3b822
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.73207340000005, "std_reward": 15.749777871079571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-14T11:55:11.348895"}