BenLearningRL
commited on
Commit
·
cecf557
1
Parent(s):
940362e
Created an RL agent using PPO to solve the LunarLander-v2 environment
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 264.73 +/- 15.75
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eff43562680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff43562710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff435627a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff43562830>", "_build": "<function ActorCriticPolicy._build at 0x7eff435628c0>", "forward": "<function ActorCriticPolicy.forward at 0x7eff43562950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff435629e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff43562a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7eff43562b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff43562b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff43562c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff43562cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eff43506a00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699960789174196176, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMkPD7IfdG8ZOO2O5f3xbp5YDa+ThA9uwAAgD8AAIA/Zni7Pftf7juqEc+82g8ZvqkARTvI5tE8AAAAAAAAAADAjDc+ARypvE79dTkd5Ke3JLgZvnxUprgAAIA/AACAP22dRr7PJpI/y3qivus5I79YWHW+O8abvQAAAAAAAAAAcwP3PWyfo7sNQH69xuRZvOfXCj2XBjs9AACAPwAAgD+1Pay+OX4MP/lfET4VPc++AakRvuir+j0AAAAAAAAAAA1Woz2zD1k/WX+APcnyCL/+Njw9/OgAPQAAAAAAAAAAeqIhPjSwjD/rMWs+B6E7v8GYHz7Wttk9AAAAAAAAAACTQi8+3JlJvGaGgTuKgMO5rXS0vWbDn7oAAIA/AACAP2Y9db2D/HU/ss6fvUDYIL+RN8y927pHPQAAAAAAAAAADUYKvq6l1LqTN4A8AsaQPLGAVTuS3XE9AACAPwAAgD8rbIG+mupGPyt7Ib6wWAy/bLWAvqVnED4AAAAAAAAAADMnszsWuTs9DjUCPsRjVb4dfKo9uKkovQAAAAAAAAAAIGo0Pjttsry0RgE8EuOhunOAHb77Knu7AACAPwAAgD+ayTw9cBg2P8JUmD0ZDv2+x+EbPajN/TkAAAAAAAAAAHrPLT6Pf1q8E5CYOgUDr7hKUMe9exXBuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+F6ews5GWMAWyUS9OMAXSUR0ClavQD/2kBdX2UKGgGR0BxcWk0rK/3aAdL32gIR0Clay1OsT37dX2UKGgGR0Bvqu/i5uqFaAdL0GgIR0ClbPDbah6CdX2UKGgGR0BxTOkWRA8kaAdLwmgIR0ClbaxL9MsZdX2UKGgGR0BjmpL7GecyaAdN6ANoCEdApW4AkiUxEnV9lChoBkdAcE565Xlr/WgHS91oCEdApW4+q94/vHV9lChoBkdAcNsmY0EX+GgHS99oCEdApW8K7ulXR3V9lChoBkdAcUWj2zv7WWgHS+1oCEdApW8kNFz+33V9lChoBkdAcbHD0lJHy2gHTQ0BaAhHQKVvpMDfWMF1fZQoaAZHQHDZssH0K7ZoB0viaAhHQKVwSV5a/yp1fZQoaAZHQHHn4zeoDPpoB0vMaAhHQKVx0gElme11fZQoaAZHQG2r495hScdoB0vTaAhHQKVzawD/2kB1fZQoaAZHQHFJacd5prVoB0viaAhHQKVzhK2a2F51fZQoaAZHQHEXVOKwY+BoB0v4aAhHQKVzvA+pwS91fZQoaAZHQGSa8La24NJoB03oA2gIR0Clc+l/H5rQdX2UKGgGR0BgIyzw+dK/aAdN6ANoCEdApXRVZid8RnV9lChoBkdAcn7IWxhUi2gHS9doCEdApXRhLCemN3V9lChoBkdAZmx0JWvKU2gHTegDaAhHQKV09rP+n651fZQoaAZHQHL8NRNyo4xoB0vXaAhHQKV1F4gzP8h1fZQoaAZHQHIpSkoF3ZBoB00GAWgIR0ClddGHP/rCdX2UKGgGR0BkHeu5jH4oaAdN6ANoCEdApXZBppN9IHV9lChoBkdAcv/5J9RaYGgHS+poCEdApXZfeDWbw3V9lChoBkdAZfatK7I1cmgHTegDaAhHQKV28g/Tspp1fZQoaAZHQHIxBgmZ3LVoB0veaAhHQKV3gzSCvox1fZQoaAZHQHDnvDpC8e1oB0vKaAhHQKV4lCvX9R91fZQoaAZHQG9Q1Kf4AS5oB0vHaAhHQKV4m+EAYHh1fZQoaAZHQHDy0HY6GQFoB0vKaAhHQKV48FbmlqJ1fZQoaAZHQHF9bOeJ53VoB0vDaAhHQKV5aPDpC8h1fZQoaAZHQG4MXC9AX2xoB0vRaAhHQKV6baEi+td1fZQoaAZHQHAYrhisnzBoB0v0aAhHQKV61Kifxtp1fZQoaAZHQHFla/IsAedoB0vAaAhHQKV61vc8DCB1fZQoaAZHQHFN+4G2TgVoB0vhaAhHQKV7CSOinHh1fZQoaAZHQGJECaRZED1oB03oA2gIR0Cle54xtYSydX2UKGgGR0Bu8PNHH3lCaAdLyWgIR0Cle6SuhbnpdX2UKGgGR0Bx0okgOjIraAdL6GgIR0ClfFYqG1x9dX2UKGgGR0Bv2HVLBbfQaAdLxGgIR0ClfM2nsLOSdX2UKGgGR0Bwkdm6GxlhaAdLymgIR0ClfihFEy+IdX2UKGgGR0BxbG5CngpCaAdL0WgIR0ClfmOAqd6LdX2UKGgGR0Bu0BZZB9kSaAdLyWgIR0Clfw8afjCIdX2UKGgGR0Byysoa1kUcaAdL9WgIR0Clf+Gmk30gdX2UKGgGR0BvGp3Roh6jaAdL0GgIR0ClgGyD7IkrdX2UKGgGR0ByEQoPTXrdaAdLxWgIR0ClgIk7wKBvdX2UKGgGR0BwHDAVO9FnaAdL12gIR0ClgUPzvqkedX2UKGgGR0BwXv8aXKKYaAdLzWgIR0ClgaBkZrHmdX2UKGgGR0BwF4oZydWiaAdL1mgIR0Clged07r9mdX2UKGgGR0Bw+6qS5iEyaAdLvWgIR0Clge5Huqm1dX2UKGgGR0BlHwOFxn3+aAdN6ANoCEdApYLSOYIBzXV9lChoBkdAcktwV0tAcGgHS89oCEdApYLpl+Vkc3V9lChoBkdAcEVS/TLGJmgHS91oCEdApYRm+/QBxXV9lChoBkdAcPiQjlgc+GgHS8VoCEdApYR/1e0G/3V9lChoBkdAc0gChew9q2gHS+FoCEdApYSpSHdoFnV9lChoBkdAVi2XOW0JGGgHTegDaAhHQKWEu5eZ5Rl1fZQoaAZHQHFZ9M495hVoB0vCaAhHQKWE82Q4jr11fZQoaAZHQHFPkkOZssRoB0vHaAhHQKWFYTHsC1Z1fZQoaAZHQG8KN/4IrvtoB0vTaAhHQKWFovYe1a51fZQoaAZHQHLK7Qb+98JoB0vAaAhHQKWFvW8yvcJ1fZQoaAZHQHFrudbxEv1oB0voaAhHQKWGpdZ7ojh1fZQoaAZHQHJ3S4z7/GVoB0vqaAhHQKWG5G4I8hd1fZQoaAZHQHIKVTWGyopoB0vSaAhHQKWHC4iosI51fZQoaAZHQHGUsdo371toB0vbaAhHQKWHR91EE1V1fZQoaAZHQHBOJ9qk/KRoB0vUaAhHQKWIXeruIAR1fZQoaAZHQHC9Y2fkFOhoB0vJaAhHQKWIdmmLtNV1fZQoaAZHQHDKUcXFcY9oB0vyaAhHQKWJFpDeCTV1fZQoaAZHQG51SOq//NtoB01WA2gIR0CliRvv8ZUDdX2UKGgGR0BwdJvBJqZdaAdNXAFoCEdApYklpPAO8XV9lChoBkdAcSAe5nUUf2gHS95oCEdApYmZ/7SApnV9lChoBkdAcGEhFEy+H2gHS9RoCEdApYm0e8wpOXV9lChoBkdAccORmseXA2gHS/9oCEdApYnKSowVTXV9lChoBkdAb5N8ohIOH2gHS8FoCEdApYqc4BFNL3V9lChoBkdAclQS+xnnMmgHTQYBaAhHQKWKrorWiDd1fZQoaAZHQHDNkmMOwxFoB0vOaAhHQKWLPOhTOxB1fZQoaAZHQHM3b876pHZoB00GAWgIR0Cli7ZYxL00dX2UKGgGR0ByIJeWv8qGaAdL0mgIR0CljHEDp1RtdX2UKGgGR0Bv3ZRuTA32aAdL42gIR0CljOnyEtdzdX2UKGgGR0Bw310/4ZdfaAdLx2gIR0CljPsMiKR/dX2UKGgGR0Bw3iO2iL2paAdL32gIR0CljXZaFEiMdX2UKGgGR0BvK/o9s7+2aAdL4GgIR0CljiM8gZCOdX2UKGgGR0BvEzmdRR/FaAdL6mgIR0Cljj2Cdz4ldX2UKGgGR0BhYg0Kqn3taAdN6ANoCEdApY5JqwhW53V9lChoBkdAcRuBQemvXGgHS75oCEdApY558MNMG3V9lChoBkdAcstN34bjtGgHTQIBaAhHQKWO4aOPvKF1fZQoaAZHQHNiBa9sabZoB01EAWgIR0Clj4NLL6k7dX2UKGgGR0BxRwVxjriVaAdL8WgIR0ClkKiXY150dX2UKGgGR0Bwo0iGFi8WaAdL2GgIR0ClkOAccU/OdX2UKGgGR0By5vFo+OfeaAdNFgFoCEdApZDtqQA+6nV9lChoBkdAcZe8qnWJ8GgHS8poCEdApZEMDuBtlHV9lChoBkdAYagWGATZhGgHTegDaAhHQKWRRXAdn011fZQoaAZHQHH/k6T4cm1oB0vqaAhHQKWRtLIPsiV1fZQoaAZHQHCUncclw99oB0vbaAhHQKWR1iJfpll1fZQoaAZHQG/dx33YcvNoB0vVaAhHQKWSeM4LkS51fZQoaAZHQHE2TENvwVloB0vqaAhHQKWS127FsHl1fZQoaAZHQHBqSuhbnoxoB0vOaAhHQKWS7tnf2sd1fZQoaAZHQHFmRsdkrgBoB0vFaAhHQKWTXUVi4KB1fZQoaAZHQHFV5Qgs9SxoB0vLaAhHQKWUgHbAUL51fZQoaAZHQHLw5jUd7v5oB0vbaAhHQKWU/LV4HHF1fZQoaAZHQHGBhUaQ3gloB0vbaAhHQKWVD+RYA811fZQoaAZHQHE9UbgjyFxoB0vRaAhHQKWVLzkIX0p1fZQoaAZHQHFPkka/ATJoB0uyaAhHQKWVL05EMLF1fZQoaAZHQHBqaxs2vStoB0vFaAhHQKWVXl8PWhB1fZQoaAZHQHEb88La24NoB0vpaAhHQKWVZC+De0p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 327, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63060b110128fa2098d537fb0d11ff7be514873baab3831e1cff6ff9722352d1
|
3 |
+
size 147949
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eff43562680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff43562710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff435627a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff43562830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eff435628c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eff43562950>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7eff435629e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff43562a70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eff43562b00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff43562b90>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff43562c20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff43562cb0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7eff43506a00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1699960789174196176,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMkPD7IfdG8ZOO2O5f3xbp5YDa+ThA9uwAAgD8AAIA/Zni7Pftf7juqEc+82g8ZvqkARTvI5tE8AAAAAAAAAADAjDc+ARypvE79dTkd5Ke3JLgZvnxUprgAAIA/AACAP22dRr7PJpI/y3qivus5I79YWHW+O8abvQAAAAAAAAAAcwP3PWyfo7sNQH69xuRZvOfXCj2XBjs9AACAPwAAgD+1Pay+OX4MP/lfET4VPc++AakRvuir+j0AAAAAAAAAAA1Woz2zD1k/WX+APcnyCL/+Njw9/OgAPQAAAAAAAAAAeqIhPjSwjD/rMWs+B6E7v8GYHz7Wttk9AAAAAAAAAACTQi8+3JlJvGaGgTuKgMO5rXS0vWbDn7oAAIA/AACAP2Y9db2D/HU/ss6fvUDYIL+RN8y927pHPQAAAAAAAAAADUYKvq6l1LqTN4A8AsaQPLGAVTuS3XE9AACAPwAAgD8rbIG+mupGPyt7Ib6wWAy/bLWAvqVnED4AAAAAAAAAADMnszsWuTs9DjUCPsRjVb4dfKo9uKkovQAAAAAAAAAAIGo0Pjttsry0RgE8EuOhunOAHb77Knu7AACAPwAAgD+ayTw9cBg2P8JUmD0ZDv2+x+EbPajN/TkAAAAAAAAAAHrPLT6Pf1q8E5CYOgUDr7hKUMe9exXBuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV9AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+F6ews5GWMAWyUS9OMAXSUR0ClavQD/2kBdX2UKGgGR0BxcWk0rK/3aAdL32gIR0Clay1OsT37dX2UKGgGR0Bvqu/i5uqFaAdL0GgIR0ClbPDbah6CdX2UKGgGR0BxTOkWRA8kaAdLwmgIR0ClbaxL9MsZdX2UKGgGR0BjmpL7GecyaAdN6ANoCEdApW4AkiUxEnV9lChoBkdAcE565Xlr/WgHS91oCEdApW4+q94/vHV9lChoBkdAcNsmY0EX+GgHS99oCEdApW8K7ulXR3V9lChoBkdAcUWj2zv7WWgHS+1oCEdApW8kNFz+33V9lChoBkdAcbHD0lJHy2gHTQ0BaAhHQKVvpMDfWMF1fZQoaAZHQHDZssH0K7ZoB0viaAhHQKVwSV5a/yp1fZQoaAZHQHHn4zeoDPpoB0vMaAhHQKVx0gElme11fZQoaAZHQG2r495hScdoB0vTaAhHQKVzawD/2kB1fZQoaAZHQHFJacd5prVoB0viaAhHQKVzhK2a2F51fZQoaAZHQHEXVOKwY+BoB0v4aAhHQKVzvA+pwS91fZQoaAZHQGSa8La24NJoB03oA2gIR0Clc+l/H5rQdX2UKGgGR0BgIyzw+dK/aAdN6ANoCEdApXRVZid8RnV9lChoBkdAcn7IWxhUi2gHS9doCEdApXRhLCemN3V9lChoBkdAZmx0JWvKU2gHTegDaAhHQKV09rP+n651fZQoaAZHQHL8NRNyo4xoB0vXaAhHQKV1F4gzP8h1fZQoaAZHQHIpSkoF3ZBoB00GAWgIR0ClddGHP/rCdX2UKGgGR0BkHeu5jH4oaAdN6ANoCEdApXZBppN9IHV9lChoBkdAcv/5J9RaYGgHS+poCEdApXZfeDWbw3V9lChoBkdAZfatK7I1cmgHTegDaAhHQKV28g/Tspp1fZQoaAZHQHIxBgmZ3LVoB0veaAhHQKV3gzSCvox1fZQoaAZHQHDnvDpC8e1oB0vKaAhHQKV4lCvX9R91fZQoaAZHQG9Q1Kf4AS5oB0vHaAhHQKV4m+EAYHh1fZQoaAZHQHDy0HY6GQFoB0vKaAhHQKV48FbmlqJ1fZQoaAZHQHF9bOeJ53VoB0vDaAhHQKV5aPDpC8h1fZQoaAZHQG4MXC9AX2xoB0vRaAhHQKV6baEi+td1fZQoaAZHQHAYrhisnzBoB0v0aAhHQKV61Kifxtp1fZQoaAZHQHFla/IsAedoB0vAaAhHQKV61vc8DCB1fZQoaAZHQHFN+4G2TgVoB0vhaAhHQKV7CSOinHh1fZQoaAZHQGJECaRZED1oB03oA2gIR0Cle54xtYSydX2UKGgGR0Bu8PNHH3lCaAdLyWgIR0Cle6SuhbnpdX2UKGgGR0Bx0okgOjIraAdL6GgIR0ClfFYqG1x9dX2UKGgGR0Bv2HVLBbfQaAdLxGgIR0ClfM2nsLOSdX2UKGgGR0Bwkdm6GxlhaAdLymgIR0ClfihFEy+IdX2UKGgGR0BxbG5CngpCaAdL0WgIR0ClfmOAqd6LdX2UKGgGR0Bu0BZZB9kSaAdLyWgIR0Clfw8afjCIdX2UKGgGR0Byysoa1kUcaAdL9WgIR0Clf+Gmk30gdX2UKGgGR0BvGp3Roh6jaAdL0GgIR0ClgGyD7IkrdX2UKGgGR0ByEQoPTXrdaAdLxWgIR0ClgIk7wKBvdX2UKGgGR0BwHDAVO9FnaAdL12gIR0ClgUPzvqkedX2UKGgGR0BwXv8aXKKYaAdLzWgIR0ClgaBkZrHmdX2UKGgGR0BwF4oZydWiaAdL1mgIR0Clged07r9mdX2UKGgGR0Bw+6qS5iEyaAdLvWgIR0Clge5Huqm1dX2UKGgGR0BlHwOFxn3+aAdN6ANoCEdApYLSOYIBzXV9lChoBkdAcktwV0tAcGgHS89oCEdApYLpl+Vkc3V9lChoBkdAcEVS/TLGJmgHS91oCEdApYRm+/QBxXV9lChoBkdAcPiQjlgc+GgHS8VoCEdApYR/1e0G/3V9lChoBkdAc0gChew9q2gHS+FoCEdApYSpSHdoFnV9lChoBkdAVi2XOW0JGGgHTegDaAhHQKWEu5eZ5Rl1fZQoaAZHQHFZ9M495hVoB0vCaAhHQKWE82Q4jr11fZQoaAZHQHFPkkOZssRoB0vHaAhHQKWFYTHsC1Z1fZQoaAZHQG8KN/4IrvtoB0vTaAhHQKWFovYe1a51fZQoaAZHQHLK7Qb+98JoB0vAaAhHQKWFvW8yvcJ1fZQoaAZHQHFrudbxEv1oB0voaAhHQKWGpdZ7ojh1fZQoaAZHQHJ3S4z7/GVoB0vqaAhHQKWG5G4I8hd1fZQoaAZHQHIKVTWGyopoB0vSaAhHQKWHC4iosI51fZQoaAZHQHGUsdo371toB0vbaAhHQKWHR91EE1V1fZQoaAZHQHBOJ9qk/KRoB0vUaAhHQKWIXeruIAR1fZQoaAZHQHC9Y2fkFOhoB0vJaAhHQKWIdmmLtNV1fZQoaAZHQHDKUcXFcY9oB0vyaAhHQKWJFpDeCTV1fZQoaAZHQG51SOq//NtoB01WA2gIR0CliRvv8ZUDdX2UKGgGR0BwdJvBJqZdaAdNXAFoCEdApYklpPAO8XV9lChoBkdAcSAe5nUUf2gHS95oCEdApYmZ/7SApnV9lChoBkdAcGEhFEy+H2gHS9RoCEdApYm0e8wpOXV9lChoBkdAccORmseXA2gHS/9oCEdApYnKSowVTXV9lChoBkdAb5N8ohIOH2gHS8FoCEdApYqc4BFNL3V9lChoBkdAclQS+xnnMmgHTQYBaAhHQKWKrorWiDd1fZQoaAZHQHDNkmMOwxFoB0vOaAhHQKWLPOhTOxB1fZQoaAZHQHM3b876pHZoB00GAWgIR0Cli7ZYxL00dX2UKGgGR0ByIJeWv8qGaAdL0mgIR0CljHEDp1RtdX2UKGgGR0Bv3ZRuTA32aAdL42gIR0CljOnyEtdzdX2UKGgGR0Bw310/4ZdfaAdLx2gIR0CljPsMiKR/dX2UKGgGR0Bw3iO2iL2paAdL32gIR0CljXZaFEiMdX2UKGgGR0BvK/o9s7+2aAdL4GgIR0CljiM8gZCOdX2UKGgGR0BvEzmdRR/FaAdL6mgIR0Cljj2Cdz4ldX2UKGgGR0BhYg0Kqn3taAdN6ANoCEdApY5JqwhW53V9lChoBkdAcRuBQemvXGgHS75oCEdApY558MNMG3V9lChoBkdAcstN34bjtGgHTQIBaAhHQKWO4aOPvKF1fZQoaAZHQHNiBa9sabZoB01EAWgIR0Clj4NLL6k7dX2UKGgGR0BxRwVxjriVaAdL8WgIR0ClkKiXY150dX2UKGgGR0Bwo0iGFi8WaAdL2GgIR0ClkOAccU/OdX2UKGgGR0By5vFo+OfeaAdNFgFoCEdApZDtqQA+6nV9lChoBkdAcZe8qnWJ8GgHS8poCEdApZEMDuBtlHV9lChoBkdAYagWGATZhGgHTegDaAhHQKWRRXAdn011fZQoaAZHQHH/k6T4cm1oB0vqaAhHQKWRtLIPsiV1fZQoaAZHQHCUncclw99oB0vbaAhHQKWR1iJfpll1fZQoaAZHQG/dx33YcvNoB0vVaAhHQKWSeM4LkS51fZQoaAZHQHE2TENvwVloB0vqaAhHQKWS127FsHl1fZQoaAZHQHBqSuhbnoxoB0vOaAhHQKWS7tnf2sd1fZQoaAZHQHFmRsdkrgBoB0vFaAhHQKWTXUVi4KB1fZQoaAZHQHFV5Qgs9SxoB0vLaAhHQKWUgHbAUL51fZQoaAZHQHLw5jUd7v5oB0vbaAhHQKWU/LV4HHF1fZQoaAZHQHGBhUaQ3gloB0vbaAhHQKWVD+RYA811fZQoaAZHQHE9UbgjyFxoB0vRaAhHQKWVLzkIX0p1fZQoaAZHQHFPkka/ATJoB0uyaAhHQKWVL05EMLF1fZQoaAZHQHBqaxs2vStoB0vFaAhHQKWVXl8PWhB1fZQoaAZHQHEb88La24NoB0vpaAhHQKWVZC+De0p1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 327,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:231f7a0d67e3d2cdb18857dfb737b846b8411c60ed2ac468bb87647b424f9944
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cd6dab47b69704acf333ad1f5968802dc551d857cedb2f03c09549e0ba3b822
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (186 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.73207340000005, "std_reward": 15.749777871079571, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-14T11:55:11.348895"}
|