Benedict-L commited on
Commit
95a4d4c
1 Parent(s): 8d7f547

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd3
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd3
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1833
21
+ - Answer: {'precision': 0.2526041666666667, 'recall': 0.23980222496909764, 'f1': 0.24603677869372226, 'number': 809}
22
+ - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
23
+ - Question: {'precision': 0.4935064935064935, 'recall': 0.5352112676056338, 'f1': 0.5135135135135136, 'number': 1065}
24
+ - Overall Precision: 0.3973
25
+ - Overall Recall: 0.3833
26
+ - Overall F1: 0.3902
27
+ - Overall Accuracy: 0.6048
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 500
53
+ - num_epochs: 12
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 1.9597 | 1.0 | 10 | 1.9692 | {'precision': 0.024831867563372995, 'recall': 0.059332509270704575, 'f1': 0.0350109409190372, 'number': 809} | {'precision': 0.0054894784995425435, 'recall': 0.05042016806722689, 'f1': 0.009900990099009901, 'number': 119} | {'precision': 0.05862516212710765, 'recall': 0.21220657276995306, 'f1': 0.091869918699187, 'number': 1065} | 0.0407 | 0.1405 | 0.0631 | 0.1655 |
61
+ | 1.9429 | 2.0 | 20 | 1.9517 | {'precision': 0.02355889724310777, 'recall': 0.0580964153275649, 'f1': 0.033523537803138374, 'number': 809} | {'precision': 0.006984866123399301, 'recall': 0.05042016806722689, 'f1': 0.012269938650306747, 'number': 119} | {'precision': 0.06357435197817189, 'recall': 0.2187793427230047, 'f1': 0.09852008456659618, 'number': 1065} | 0.0439 | 0.1435 | 0.0672 | 0.1837 |
62
+ | 1.9283 | 3.0 | 30 | 1.9222 | {'precision': 0.02506265664160401, 'recall': 0.06180469715698393, 'f1': 0.035663338088445073, 'number': 809} | {'precision': 0.005802707930367505, 'recall': 0.025210084033613446, 'f1': 0.009433962264150943, 'number': 119} | {'precision': 0.0683998761993191, 'recall': 0.20751173708920187, 'f1': 0.10288640595903166, 'number': 1065} | 0.0477 | 0.1375 | 0.0708 | 0.2076 |
63
+ | 1.8979 | 4.0 | 40 | 1.8822 | {'precision': 0.026082130965593784, 'recall': 0.0580964153275649, 'f1': 0.03600153198008425, 'number': 809} | {'precision': 0.01327433628318584, 'recall': 0.025210084033613446, 'f1': 0.017391304347826087, 'number': 119} | {'precision': 0.07303807303807304, 'recall': 0.17652582159624414, 'f1': 0.10332508931025007, 'number': 1065} | 0.0517 | 0.1194 | 0.0722 | 0.2412 |
64
+ | 1.8452 | 5.0 | 50 | 1.8330 | {'precision': 0.02404809619238477, 'recall': 0.04449938195302843, 'f1': 0.03122289679098005, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.08863636363636364, 'recall': 0.14647887323943662, 'f1': 0.11044247787610618, 'number': 1065} | 0.0577 | 0.0963 | 0.0722 | 0.2719 |
65
+ | 1.7986 | 6.0 | 60 | 1.7759 | {'precision': 0.017241379310344827, 'recall': 0.022249690976514216, 'f1': 0.019427954668105776, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.1244196843082637, 'recall': 0.12582159624413145, 'f1': 0.12511671335200747, 'number': 1065} | 0.0713 | 0.0763 | 0.0737 | 0.3012 |
66
+ | 1.7397 | 7.0 | 70 | 1.7107 | {'precision': 0.02045728038507822, 'recall': 0.021013597033374538, 'f1': 0.02073170731707317, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18026315789473685, 'recall': 0.12863849765258217, 'f1': 0.15013698630136987, 'number': 1065} | 0.0967 | 0.0773 | 0.0859 | 0.3270 |
67
+ | 1.6707 | 8.0 | 80 | 1.6298 | {'precision': 0.03066271018793274, 'recall': 0.038318912237330034, 'f1': 0.03406593406593406, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.20087815587266739, 'recall': 0.17183098591549295, 'f1': 0.18522267206477733, 'number': 1065} | 0.1113 | 0.1074 | 0.1093 | 0.3654 |
68
+ | 1.5891 | 9.0 | 90 | 1.5416 | {'precision': 0.047619047619047616, 'recall': 0.06674907292954264, 'f1': 0.055584148224395266, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2087421944692239, 'recall': 0.21971830985915494, 'f1': 0.2140896614821592, 'number': 1065} | 0.1277 | 0.1445 | 0.1356 | 0.4183 |
69
+ | 1.516 | 10.0 | 100 | 1.4443 | {'precision': 0.06370070778564206, 'recall': 0.07787391841779975, 'f1': 0.07007786429365963, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2838983050847458, 'recall': 0.3145539906103286, 'f1': 0.2984409799554566, 'number': 1065} | 0.1835 | 0.1997 | 0.1913 | 0.4720 |
70
+ | 1.3887 | 11.0 | 110 | 1.3259 | {'precision': 0.11662531017369727, 'recall': 0.1161928306551298, 'f1': 0.11640866873065016, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.39842381786339753, 'recall': 0.4272300469483568, 'f1': 0.412324422292705, 'number': 1065} | 0.2818 | 0.2755 | 0.2786 | 0.5434 |
71
+ | 1.261 | 12.0 | 120 | 1.1833 | {'precision': 0.2526041666666667, 'recall': 0.23980222496909764, 'f1': 0.24603677869372226, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4935064935064935, 'recall': 0.5352112676056338, 'f1': 0.5135135135135136, 'number': 1065} | 0.3973 | 0.3833 | 0.3902 | 0.6048 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.41.2
77
+ - Pytorch 2.3.1+cu121
78
+ - Datasets 2.19.2
79
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1718875084.HCIDC-SV-DMZ-ORC-NODE02.4012038.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b8bd9bb5539cfaf6d6ca9f211f5c0a46cd4a6e16cf3d427b16869d77569f590
3
- size 12088
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de745677a458d4c35476e2793c68b5c4440c137dad4cd8bf28f8ad4d0bb97f08
3
+ size 13840
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a1d8c5a90a145bb102767bd0bcb2eb55551c26926b7c08ee7f774fe606e7854c
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2263c680fbb5598847514a92e075baba20b500e8e10fcdeeae08f6da3a0fd51
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff