--- license: other library_name: transformers tags: - generated_from_trainer base_model: Qwen/Qwen2.5-72B datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture - cognitivecomputations/dolphin-2.9.3 license_name: qwen license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE model-index: - name: EVA-Qwen2.5-72B-SFFT-v0.2 results: [] --- # EVA Qwen2.5-72B v0.2

A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-72B on mixture of synthetic and natural data.
It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.

Dedicated to Nev.

NOTE: LLM-Compressor quants don't seem to work correctly, quality seems to be much worse than normal. It wasn't the case with previous versions. GGUF and GPTQ seem to be unaffected.


Version notes for 0.2: Optimized training hyperparameters and increased sequence length. Better instruction following deeper into context and less repetition.

Prompt format is ChatML.


Recommended sampler values:

Recommended SillyTavern preset (via CalamitousFelicitousness):


Training data:

Training time and hardware:


Model was created by Kearm, Auri and Cahvay.

Special thanks:

Statement about change in licensing for the future models.

For all future EVA-Unit-01 models, there will be a provision in the license stating that Infermatic and any of its employees or paid associates cannot utilize, distribute, download, or otherwise make use of EVA models. While this cannot retroactively apply to our licensing, we officially request Infermatic immediately cease use of our models for unwarranted profit, although we acknowledge at this point it will not likely be followed. EVA models will still be available in the future on Featherless, ArliAI (in the future), and other providers who want to host them, as well as for local and cloud usage.

[Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-72B load_in_8bit: false load_in_4bit: false strict: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true # plugins: # - axolotl.integrations.spectrum.SpectrumPlugin # spectrum_top_fraction: 0.5 # # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror # spectrum_model_name: Qwen/Qwen2.5-32B datasets: - path: datasets/Celeste_Filtered_utf8fix.jsonl type: sharegpt - path: datasets/deduped_not_samantha_norefusals.jsonl type: sharegpt - path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl type: sharegpt - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl type: sharegpt - path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl type: sharegpt - path: datasets/opus-instruct-22k-no_refusals-filtered_utf8fix.jsonl type: sharegpt - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl type: sharegpt - path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl type: sharegpt chat_template: chatml shuffle_merged_datasets: true val_set_size: 0.001 output_dir: EVA-Qwen2.5-72B-SFFT-v0.2 sequence_len: 10240 sample_packing: true eval_sample_packing: false pad_to_sequence_len: false # adapter: qlora # lora_model_dir: # lora_r: 64 # lora_alpha: 128 # lora_dropout: 0.05 # lora_target_linear: true # peft_use_dora: true unfrozen_parameters: - ^lm_head.weight$ - ^model.embed_tokens.weight$ # mlp.down_proj layers - model.layers.62.mlp.down_proj - model.layers.64.mlp.down_proj - model.layers.63.mlp.down_proj - model.layers.66.mlp.down_proj - model.layers.65.mlp.down_proj - model.layers.67.mlp.down_proj - model.layers.68.mlp.down_proj - model.layers.31.mlp.down_proj - model.layers.60.mlp.down_proj - model.layers.69.mlp.down_proj - model.layers.61.mlp.down_proj - model.layers.59.mlp.down_proj - model.layers.30.mlp.down_proj - model.layers.70.mlp.down_proj - model.layers.32.mlp.down_proj - model.layers.34.mlp.down_proj - model.layers.33.mlp.down_proj - model.layers.76.mlp.down_proj - model.layers.72.mlp.down_proj - model.layers.71.mlp.down_proj - model.layers.58.mlp.down_proj - model.layers.75.mlp.down_proj - model.layers.29.mlp.down_proj - model.layers.56.mlp.down_proj - model.layers.26.mlp.down_proj - model.layers.35.mlp.down_proj - model.layers.28.mlp.down_proj - model.layers.57.mlp.down_proj - model.layers.77.mlp.down_proj - model.layers.36.mlp.down_proj - model.layers.27.mlp.down_proj - model.layers.25.mlp.down_proj - model.layers.78.mlp.down_proj - model.layers.37.mlp.down_proj - model.layers.73.mlp.down_proj - model.layers.55.mlp.down_proj - model.layers.54.mlp.down_proj - model.layers.74.mlp.down_proj - model.layers.24.mlp.down_proj - model.layers.53.mlp.down_proj # mlp.gate_proj layers - model.layers.78.mlp.gate_proj - model.layers.77.mlp.gate_proj - model.layers.76.mlp.gate_proj - model.layers.79.mlp.gate_proj - model.layers.75.mlp.gate_proj - model.layers.74.mlp.gate_proj - model.layers.73.mlp.gate_proj - model.layers.72.mlp.gate_proj - model.layers.71.mlp.gate_proj - model.layers.70.mlp.gate_proj - model.layers.69.mlp.gate_proj - model.layers.57.mlp.gate_proj - model.layers.54.mlp.gate_proj - model.layers.55.mlp.gate_proj - model.layers.68.mlp.gate_proj - model.layers.63.mlp.gate_proj - model.layers.53.mlp.gate_proj - model.layers.44.mlp.gate_proj - model.layers.45.mlp.gate_proj - model.layers.49.mlp.gate_proj - model.layers.58.mlp.gate_proj - model.layers.46.mlp.gate_proj - model.layers.56.mlp.gate_proj - model.layers.67.mlp.gate_proj - model.layers.62.mlp.gate_proj - model.layers.50.mlp.gate_proj - model.layers.64.mlp.gate_proj - model.layers.52.mlp.gate_proj - model.layers.40.mlp.gate_proj - model.layers.43.mlp.gate_proj - model.layers.48.mlp.gate_proj - model.layers.66.mlp.gate_proj - model.layers.47.mlp.gate_proj - model.layers.59.mlp.gate_proj - model.layers.65.mlp.gate_proj - model.layers.61.mlp.gate_proj - model.layers.60.mlp.gate_proj - model.layers.42.mlp.gate_proj - model.layers.51.mlp.gate_proj - model.layers.41.mlp.gate_proj # mlp.up_proj layers - model.layers.70.mlp.up_proj - model.layers.69.mlp.up_proj - model.layers.71.mlp.up_proj - model.layers.68.mlp.up_proj - model.layers.72.mlp.up_proj - model.layers.67.mlp.up_proj - model.layers.66.mlp.up_proj - model.layers.73.mlp.up_proj - model.layers.46.mlp.up_proj - model.layers.63.mlp.up_proj - model.layers.75.mlp.up_proj - model.layers.76.mlp.up_proj - model.layers.74.mlp.up_proj - model.layers.45.mlp.up_proj - model.layers.62.mlp.up_proj - model.layers.64.mlp.up_proj - model.layers.65.mlp.up_proj - model.layers.44.mlp.up_proj - model.layers.53.mlp.up_proj - model.layers.47.mlp.up_proj - model.layers.49.mlp.up_proj - model.layers.48.mlp.up_proj - model.layers.57.mlp.up_proj - model.layers.43.mlp.up_proj - model.layers.42.mlp.up_proj - model.layers.56.mlp.up_proj - model.layers.61.mlp.up_proj - model.layers.54.mlp.up_proj - model.layers.40.mlp.up_proj - model.layers.55.mlp.up_proj - model.layers.77.mlp.up_proj - model.layers.60.mlp.up_proj - model.layers.41.mlp.up_proj - model.layers.35.mlp.up_proj - model.layers.37.mlp.up_proj - model.layers.58.mlp.up_proj - model.layers.34.mlp.up_proj - model.layers.38.mlp.up_proj - model.layers.33.mlp.up_proj - model.layers.39.mlp.up_proj # self_attn.k_proj layers - model.layers.36.self_attn.k_proj - model.layers.79.self_attn.k_proj - model.layers.35.self_attn.k_proj - model.layers.34.self_attn.k_proj - model.layers.37.self_attn.k_proj - model.layers.33.self_attn.k_proj - model.layers.38.self_attn.k_proj - model.layers.39.self_attn.k_proj - model.layers.74.self_attn.k_proj - model.layers.77.self_attn.k_proj - model.layers.41.self_attn.k_proj - model.layers.69.self_attn.k_proj - model.layers.32.self_attn.k_proj - model.layers.78.self_attn.k_proj - model.layers.30.self_attn.k_proj - model.layers.70.self_attn.k_proj - model.layers.25.self_attn.k_proj - model.layers.42.self_attn.k_proj - model.layers.29.self_attn.k_proj - model.layers.31.self_attn.k_proj - model.layers.68.self_attn.k_proj - model.layers.66.self_attn.k_proj - model.layers.22.self_attn.k_proj - model.layers.65.self_attn.k_proj - model.layers.44.self_attn.k_proj - model.layers.40.self_attn.k_proj - model.layers.63.self_attn.k_proj - model.layers.23.self_attn.k_proj - model.layers.28.self_attn.k_proj - model.layers.24.self_attn.k_proj - model.layers.26.self_attn.k_proj - model.layers.67.self_attn.k_proj - model.layers.75.self_attn.k_proj - model.layers.27.self_attn.k_proj - model.layers.57.self_attn.k_proj - model.layers.64.self_attn.k_proj - model.layers.71.self_attn.k_proj - model.layers.61.self_attn.k_proj - model.layers.72.self_attn.k_proj - model.layers.73.self_attn.k_proj # self_attn.o_proj layers - model.layers.69.self_attn.o_proj - model.layers.39.self_attn.o_proj - model.layers.16.self_attn.o_proj - model.layers.14.self_attn.o_proj - model.layers.19.self_attn.o_proj - model.layers.42.self_attn.o_proj - model.layers.12.self_attn.o_proj - model.layers.15.self_attn.o_proj - model.layers.17.self_attn.o_proj - model.layers.38.self_attn.o_proj - model.layers.23.self_attn.o_proj - model.layers.22.self_attn.o_proj - model.layers.13.self_attn.o_proj - model.layers.29.self_attn.o_proj - model.layers.41.self_attn.o_proj - model.layers.44.self_attn.o_proj - model.layers.46.self_attn.o_proj - model.layers.45.self_attn.o_proj - model.layers.43.self_attn.o_proj - model.layers.49.self_attn.o_proj - model.layers.30.self_attn.o_proj - model.layers.26.self_attn.o_proj - model.layers.25.self_attn.o_proj - model.layers.37.self_attn.o_proj - model.layers.47.self_attn.o_proj - model.layers.11.self_attn.o_proj - model.layers.18.self_attn.o_proj - model.layers.28.self_attn.o_proj - model.layers.20.self_attn.o_proj - model.layers.27.self_attn.o_proj - model.layers.53.self_attn.o_proj - model.layers.52.self_attn.o_proj - model.layers.35.self_attn.o_proj - model.layers.71.self_attn.o_proj - model.layers.10.self_attn.o_proj - model.layers.3.self_attn.o_proj - model.layers.21.self_attn.o_proj - model.layers.24.self_attn.o_proj - model.layers.68.self_attn.o_proj - model.layers.48.self_attn.o_proj # self_attn.q_proj layers - model.layers.1.self_attn.q_proj - model.layers.2.self_attn.q_proj - model.layers.3.self_attn.q_proj - model.layers.0.self_attn.q_proj - model.layers.5.self_attn.q_proj - model.layers.4.self_attn.q_proj - model.layers.6.self_attn.q_proj - model.layers.8.self_attn.q_proj - model.layers.7.self_attn.q_proj - model.layers.9.self_attn.q_proj - model.layers.10.self_attn.q_proj - model.layers.68.self_attn.q_proj - model.layers.25.self_attn.q_proj - model.layers.12.self_attn.q_proj - model.layers.54.self_attn.q_proj - model.layers.55.self_attn.q_proj - model.layers.61.self_attn.q_proj - model.layers.18.self_attn.q_proj - model.layers.49.self_attn.q_proj - model.layers.66.self_attn.q_proj - model.layers.72.self_attn.q_proj - model.layers.11.self_attn.q_proj - model.layers.52.self_attn.q_proj - model.layers.64.self_attn.q_proj - model.layers.15.self_attn.q_proj - model.layers.60.self_attn.q_proj - model.layers.50.self_attn.q_proj - model.layers.59.self_attn.q_proj - model.layers.53.self_attn.q_proj - model.layers.48.self_attn.q_proj - model.layers.57.self_attn.q_proj - model.layers.70.self_attn.q_proj - model.layers.17.self_attn.q_proj - model.layers.67.self_attn.q_proj - model.layers.71.self_attn.q_proj - model.layers.62.self_attn.q_proj - model.layers.51.self_attn.q_proj - model.layers.19.self_attn.q_proj - model.layers.58.self_attn.q_proj - model.layers.13.self_attn.q_proj # self_attn.v_proj layers - model.layers.23.self_attn.v_proj - model.layers.25.self_attn.v_proj - model.layers.26.self_attn.v_proj - model.layers.27.self_attn.v_proj - model.layers.28.self_attn.v_proj - model.layers.29.self_attn.v_proj - model.layers.30.self_attn.v_proj - model.layers.31.self_attn.v_proj - model.layers.34.self_attn.v_proj - model.layers.35.self_attn.v_proj - model.layers.36.self_attn.v_proj - model.layers.37.self_attn.v_proj - model.layers.38.self_attn.v_proj - model.layers.42.self_attn.v_proj - model.layers.48.self_attn.v_proj - model.layers.57.self_attn.v_proj - model.layers.58.self_attn.v_proj - model.layers.61.self_attn.v_proj - model.layers.63.self_attn.v_proj - model.layers.64.self_attn.v_proj - model.layers.65.self_attn.v_proj - model.layers.66.self_attn.v_proj - model.layers.69.self_attn.v_proj - model.layers.70.self_attn.v_proj - model.layers.74.self_attn.v_proj - model.layers.75.self_attn.v_proj - model.layers.72.self_attn.v_proj - model.layers.39.self_attn.v_proj - model.layers.41.self_attn.v_proj - model.layers.40.self_attn.v_proj - model.layers.33.self_attn.v_proj - model.layers.59.self_attn.v_proj - model.layers.16.self_attn.v_proj - model.layers.15.self_attn.v_proj - model.layers.76.self_attn.v_proj - model.layers.24.self_attn.v_proj - model.layers.68.self_attn.v_proj - model.layers.67.self_attn.v_proj - model.layers.55.self_attn.v_proj - model.layers.44.self_attn.v_proj wandb_project: EVA-Qwen2.5-72B-SFFT-v0.2 wandb_entity: wandb_watch: wandb_name: Unit-02 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 3 optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 0.00003 max_grad_norm: 1.5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: "unsloth" # gradient_checkpointing_kwargs: # use_reentrant: true early_stopping_patience: resume_from_checkpoint: EVA-Qwen2.5-72B-SFFT-v0.2/checkpoint-128 local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 4 save_safetensors: true save_total_limit: 1 hub_model_id: hub_strategy: debug: deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json weight_decay: 0.12 # fsdp: # - full_shard # - auto_wrap # fsdp_config: # fsdp_limit_all_gathers: true # fsdp_sync_module_states: false # fsdp_offload_params: true # fsdp_cpu_ram_efficient_loading: true # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer # fsdp_activation_checkpointing: true # fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT # fsdp_sharding_strategy: FULL_SHARD # fsdp_forward_prefetch: false # Added # fsdp_backward_prefetch: "BACKWARD_PRE" # Added # fsdp_backward_prefetch_limit: 1 # Added # fsdp_mixed_precision: BF16 # Added ```

Open LLM Leaderboard Evaluation Results

| Metric |Value| |-------------------|----:| |Avg. |43.54| |IFEval (0-Shot) |68.79| |BBH (3-Shot) |59.07| |MATH Lvl 5 (4-Shot)|39.05| |GPQA (0-shot) |21.14| |MuSR (0-shot) |19.73| |MMLU-PRO (5-shot) |53.48|