Bill010602 commited on
Commit
22ba48b
1 Parent(s): ac693ff

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.33 +/- 0.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90f6ef6b00ba2b48446cbba1dcdb7ae270c3d7bba67fb3364508c52e95952f5b
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa654722430>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fa65471a6f0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674099541626327119,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyke+Pp7KDjwLBRY/yke+Pp7KDjwLBRY/yke+Pp7KDjwLBRY/yke+Pp7KDjwLBRY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIBbOPiY9K7/MQYk+HeW5vgsmtj/lJ84+BMq/v3MXwT6hjGS/7Ue5P4HdpD5Nlc6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADKR74+nsoOPAsFFj+eJN66DgegO7r/DTzKR74+nsoOPAsFFj+eJN66DgegO7r/DTzKR74+nsoOPAsFFj+eJN66DgegO7r/DTzKR74+nsoOPAsFFj+eJN66DgegO7r/DTyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.37164146 0.0087153 0.58601445]\n [0.37164146 0.0087153 0.58601445]\n [0.37164146 0.0087153 0.58601445]\n [0.37164146 0.0087153 0.58601445]]",
60
+ "desired_goal": "[[ 0.40251255 -0.6689018 0.26808012]\n [-0.36307612 1.423036 0.40264812]\n [-1.4983525 0.37713203 -0.8927708 ]\n [ 1.4475075 0.32200244 -1.6139313 ]]",
61
+ "observation": "[[ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]\n [ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]\n [ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]\n [ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQl7wvUbjOj1SyUA9xGvBPe/Yxz0utXo+aS0XPQZA67xF/Ew+YCgUvu5e4z1MU1I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.11736728 0.0456269 0.04706699]\n [ 0.09444383 0.09758174 0.24483177]\n [ 0.03690854 -0.02871705 0.20018108]\n [-0.14468527 0.11102091 0.05134897]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn1VmSutv9L+UhpRSlIwBbJRLMowBdJRHQKQWO1eBxxV1fZQoaAZoCWgPQwi/gjRj0bT2v5SGlFKUaBVLMmgWR0CkFf8KXv6TdX2UKGgGaAloD0MI0XR2MjgK/r+UhpRSlGgVSzJoFkdApBXAp+c6NnV9lChoBmgJaA9DCN0HILWJ0/i/lIaUUpRoFUsyaBZHQKQVg2R7qpt1fZQoaAZoCWgPQwjoacAg6dP6v5SGlFKUaBVLMmgWR0CkF1U4JeE7dX2UKGgGaAloD0MIBMjQsYOK9b+UhpRSlGgVSzJoFkdApBcYnWrfcnV9lChoBmgJaA9DCP2k2qfj8fK/lIaUUpRoFUsyaBZHQKQW2drftQd1fZQoaAZoCWgPQwibqntkcxX7v5SGlFKUaBVLMmgWR0CkFpwdjoZAdX2UKGgGaAloD0MI6kDWU6tv+r+UhpRSlGgVSzJoFkdApBheeWfK6nV9lChoBmgJaA9DCFpiZTTyOfm/lIaUUpRoFUsyaBZHQKQYIfV7QcB1fZQoaAZoCWgPQwiXqx+b5If4v5SGlFKUaBVLMmgWR0CkF+N+1Bt2dX2UKGgGaAloD0MI2EenrnyW/L+UhpRSlGgVSzJoFkdApBel0NjLCHV9lChoBmgJaA9DCHi2R2+4D/+/lIaUUpRoFUsyaBZHQKQZYPd2xIJ1fZQoaAZoCWgPQwirmEo/4Szzv5SGlFKUaBVLMmgWR0CkGSRjz7MxdX2UKGgGaAloD0MIJ/kRv2KN9b+UhpRSlGgVSzJoFkdApBjluHerMnV9lChoBmgJaA9DCEVI3c6+cgDAlIaUUpRoFUsyaBZHQKQYqIfr8ix1fZQoaAZoCWgPQwha9iSwOcf3v5SGlFKUaBVLMmgWR0CkGmwoCuEFdX2UKGgGaAloD0MIdChDVUzl8b+UhpRSlGgVSzJoFkdApBovtfG+9XV9lChoBmgJaA9DCE4lA0AVdwrAlIaUUpRoFUsyaBZHQKQZ8R5C4SZ1fZQoaAZoCWgPQwh88xsmGqT5v5SGlFKUaBVLMmgWR0CkGbOLiuMddX2UKGgGaAloD0MIhv90AwVe97+UhpRSlGgVSzJoFkdApBtu1D0Dl3V9lChoBmgJaA9DCEaZDTLJSPi/lIaUUpRoFUsyaBZHQKQbMnH/9511fZQoaAZoCWgPQwhNnrKaruf2v5SGlFKUaBVLMmgWR0CkGvOTaCcxdX2UKGgGaAloD0MIFt16TQ/K9L+UhpRSlGgVSzJoFkdApBq2CI1tO3V9lChoBmgJaA9DCFnDRe7pSgDAlIaUUpRoFUsyaBZHQKQca3++/QB1fZQoaAZoCWgPQwgiqvBnePPxv5SGlFKUaBVLMmgWR0CkHDAE2YOUdX2UKGgGaAloD0MI205bI4Kx+L+UhpRSlGgVSzJoFkdApBvx2ECeVnV9lChoBmgJaA9DCAXeyafH9ve/lIaUUpRoFUsyaBZHQKQbtPAO8TV1fZQoaAZoCWgPQwgfFJSilTv3v5SGlFKUaBVLMmgWR0CkHXlTm4iHdX2UKGgGaAloD0MIKV5lbVN897+UhpRSlGgVSzJoFkdApB09As052nV9lChoBmgJaA9DCGNGeHsQIgDAlIaUUpRoFUsyaBZHQKQc/pPAO8V1fZQoaAZoCWgPQwj12QHXFTP3v5SGlFKUaBVLMmgWR0CkHMEeyRjjdX2UKGgGaAloD0MIC5xsA3eg/r+UhpRSlGgVSzJoFkdApB555JK8MHV9lChoBmgJaA9DCNj1C3bD9vO/lIaUUpRoFUsyaBZHQKQePagVXV91fZQoaAZoCWgPQwgd6QyMvOz3v5SGlFKUaBVLMmgWR0CkHf7jcVQAdX2UKGgGaAloD0MIOslWl1PC9L+UhpRSlGgVSzJoFkdApB3BWq94/3V9lChoBmgJaA9DCCVATS1bq/y/lIaUUpRoFUsyaBZHQKQfjDwYtQN1fZQoaAZoCWgPQwhfm42VmKfwv5SGlFKUaBVLMmgWR0CkH0/6wdKedX2UKGgGaAloD0MIe2mKAKc3+r+UhpRSlGgVSzJoFkdApB8RbY9PlHV9lChoBmgJaA9DCDeq04GsRwPAlIaUUpRoFUsyaBZHQKQe09JSR8t1fZQoaAZoCWgPQwhWn6ut2P8EwJSGlFKUaBVLMmgWR0CkIIyDyvs7dX2UKGgGaAloD0MIIUCGjh0U8b+UhpRSlGgVSzJoFkdApCBQFgUlA3V9lChoBmgJaA9DCLzOhvwzIwHAlIaUUpRoFUsyaBZHQKQgEYekpJB1fZQoaAZoCWgPQwgcfGEyVXD1v5SGlFKUaBVLMmgWR0CkH9P7vXsgdX2UKGgGaAloD0MITDPd66T+A8CUhpRSlGgVSzJoFkdApCGWf7Jnx3V9lChoBmgJaA9DCHAH6pRHN/e/lIaUUpRoFUsyaBZHQKQhWiGFi8Z1fZQoaAZoCWgPQwg34sluZjQDwJSGlFKUaBVLMmgWR0CkIRuQZGaydX2UKGgGaAloD0MILEfIQJ4d/b+UhpRSlGgVSzJoFkdApCDeBlMAWHV9lChoBmgJaA9DCPRqgNJQI/O/lIaUUpRoFUsyaBZHQKQij+c6Nl11fZQoaAZoCWgPQwjgha3Zykvyv5SGlFKUaBVLMmgWR0CkIlOZ1FH8dX2UKGgGaAloD0MIHT1+b9Mf9L+UhpRSlGgVSzJoFkdApCIU6T4cm3V9lChoBmgJaA9DCLRyLzArlOm/lIaUUpRoFUsyaBZHQKQh1yTY/V11fZQoaAZoCWgPQwjrw3qjVpj5v5SGlFKUaBVLMmgWR0CkI5r61stTdX2UKGgGaAloD0MI+KV+3lQk9b+UhpRSlGgVSzJoFkdApCNeqxTsIHV9lChoBmgJaA9DCNo391ePu/G/lIaUUpRoFUsyaBZHQKQjIBz3h4t1fZQoaAZoCWgPQwiW6ZeIty4GwJSGlFKUaBVLMmgWR0CkIuKcd5prdX2UKGgGaAloD0MIibFMv0TcAcCUhpRSlGgVSzJoFkdApCS05U96knV9lChoBmgJaA9DCM+EJoklpfa/lIaUUpRoFUsyaBZHQKQkeIhQm/p1fZQoaAZoCWgPQwi4AZ8fRkj1v5SGlFKUaBVLMmgWR0CkJDpXhfjTdX2UKGgGaAloD0MIIqgavRrg9L+UhpRSlGgVSzJoFkdApCP8wlByCHV9lChoBmgJaA9DCED35cx2RfG/lIaUUpRoFUsyaBZHQKQlydK/VRV1fZQoaAZoCWgPQwjCTUaVYXwCwJSGlFKUaBVLMmgWR0CkJY1x82JjdX2UKGgGaAloD0MI3EqvzcbK97+UhpRSlGgVSzJoFkdApCVO1fE4vXV9lChoBmgJaA9DCFq77UJzXfy/lIaUUpRoFUsyaBZHQKQlETviLl51fZQoaAZoCWgPQwhAoZ4+Ap8FwJSGlFKUaBVLMmgWR0CkJturZJ05dX2UKGgGaAloD0MI0Lnb9dL0A8CUhpRSlGgVSzJoFkdApCafUDuBtnV9lChoBmgJaA9DCO3UXG4wFPa/lIaUUpRoFUsyaBZHQKQmYJswco91fZQoaAZoCWgPQwhfs1w2OocBwJSGlFKUaBVLMmgWR0CkJiM2eg+RdX2UKGgGaAloD0MIAb1w58LI/b+UhpRSlGgVSzJoFkdApCfpiNKh+XV9lChoBmgJaA9DCLtjsU0qGva/lIaUUpRoFUsyaBZHQKQnrSro4dZ1fZQoaAZoCWgPQwjMCdrk8En6v5SGlFKUaBVLMmgWR0CkJ26hHskZdX2UKGgGaAloD0MIuwz/6QaqBMCUhpRSlGgVSzJoFkdApCcxMFlkH3V9lChoBmgJaA9DCAaE1sOXKQXAlIaUUpRoFUsyaBZHQKQo/baAWi11fZQoaAZoCWgPQwjQCaGDLkEAwJSGlFKUaBVLMmgWR0CkKMFnZkCndX2UKGgGaAloD0MIQQ5KmGl7/7+UhpRSlGgVSzJoFkdApCiCxmkFfXV9lChoBmgJaA9DCBFV+DO8WfW/lIaUUpRoFUsyaBZHQKQoRUZvUBp1fZQoaAZoCWgPQwiBfAkVHN7rv5SGlFKUaBVLMmgWR0CkKhWTX8O1dX2UKGgGaAloD0MI5xn7ko3HB8CUhpRSlGgVSzJoFkdApCnZY3eenXV9lChoBmgJaA9DCFDkSdI1MwXAlIaUUpRoFUsyaBZHQKQpmu+RHPN1fZQoaAZoCWgPQwhQcodNZKb1v5SGlFKUaBVLMmgWR0CkKV109yLidX2UKGgGaAloD0MILPGAsimX+r+UhpRSlGgVSzJoFkdApCsnBrN4aHV9lChoBmgJaA9DCHGNz2T/TBHAlIaUUpRoFUsyaBZHQKQq6rFOwgV1fZQoaAZoCWgPQwiLFqBtNWv8v5SGlFKUaBVLMmgWR0CkKqwIUrTZdX2UKGgGaAloD0MIiV5GsdxyAMCUhpRSlGgVSzJoFkdApCpunEVFhHV9lChoBmgJaA9DCHo01ZP5x/a/lIaUUpRoFUsyaBZHQKQsOjyFwkx1fZQoaAZoCWgPQwi5cCAkC1j9v5SGlFKUaBVLMmgWR0CkK/3rt3OfdX2UKGgGaAloD0MIlGsKZHYW7b+UhpRSlGgVSzJoFkdApCu/ag261HV9lChoBmgJaA9DCGPS30vhQf+/lIaUUpRoFUsyaBZHQKQrgfra/RF1fZQoaAZoCWgPQwgdPulEgqkCwJSGlFKUaBVLMmgWR0CkLXSPU8V6dX2UKGgGaAloD0MILJ0PzxLk7b+UhpRSlGgVSzJoFkdApC04Nb1RL3V9lChoBmgJaA9DCLJHqBlSBQXAlIaUUpRoFUsyaBZHQKQs+lhw2l51fZQoaAZoCWgPQwgi36XUJcMFwJSGlFKUaBVLMmgWR0CkLLzLOiWWdX2UKGgGaAloD0MIN8XjolpE/L+UhpRSlGgVSzJoFkdApC6g4lyBCnV9lChoBmgJaA9DCMtneR7cXfa/lIaUUpRoFUsyaBZHQKQuZJQtSQ51fZQoaAZoCWgPQwjYEByXcVMCwJSGlFKUaBVLMmgWR0CkLiYk3S8bdX2UKGgGaAloD0MI9DP1ukWg97+UhpRSlGgVSzJoFkdApC3op8WsR3V9lChoBmgJaA9DCCs1e6AVmPu/lIaUUpRoFUsyaBZHQKQvsUKzAvd1fZQoaAZoCWgPQwgmpgux+uP5v5SGlFKUaBVLMmgWR0CkL3TvJA+qdX2UKGgGaAloD0MIByXMtP3r97+UhpRSlGgVSzJoFkdApC82by6MBXV9lChoBmgJaA9DCAcKvJNPD/m/lIaUUpRoFUsyaBZHQKQu+Otnwod1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d486eb2cc4627d1c4395207e9446f30decd0268d73d6f31f723b4d33a6bdc85
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:464f93e5f6c4dfa32cb459be1f6b4e0bc3c205a61c76fcf0b86e4bb24e37ce7a
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa654722430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa65471a6f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674099541626327119, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyke+Pp7KDjwLBRY/yke+Pp7KDjwLBRY/yke+Pp7KDjwLBRY/yke+Pp7KDjwLBRY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIBbOPiY9K7/MQYk+HeW5vgsmtj/lJ84+BMq/v3MXwT6hjGS/7Ue5P4HdpD5Nlc6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADKR74+nsoOPAsFFj+eJN66DgegO7r/DTzKR74+nsoOPAsFFj+eJN66DgegO7r/DTzKR74+nsoOPAsFFj+eJN66DgegO7r/DTzKR74+nsoOPAsFFj+eJN66DgegO7r/DTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.37164146 0.0087153 0.58601445]\n [0.37164146 0.0087153 0.58601445]\n [0.37164146 0.0087153 0.58601445]\n [0.37164146 0.0087153 0.58601445]]", "desired_goal": "[[ 0.40251255 -0.6689018 0.26808012]\n [-0.36307612 1.423036 0.40264812]\n [-1.4983525 0.37713203 -0.8927708 ]\n [ 1.4475075 0.32200244 -1.6139313 ]]", "observation": "[[ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]\n [ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]\n [ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]\n [ 0.37164146 0.0087153 0.58601445 -0.00169482 0.00488365 0.00866693]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQl7wvUbjOj1SyUA9xGvBPe/Yxz0utXo+aS0XPQZA67xF/Ew+YCgUvu5e4z1MU1I9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11736728 0.0456269 0.04706699]\n [ 0.09444383 0.09758174 0.24483177]\n [ 0.03690854 -0.02871705 0.20018108]\n [-0.14468527 0.11102091 0.05134897]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn1VmSutv9L+UhpRSlIwBbJRLMowBdJRHQKQWO1eBxxV1fZQoaAZoCWgPQwi/gjRj0bT2v5SGlFKUaBVLMmgWR0CkFf8KXv6TdX2UKGgGaAloD0MI0XR2MjgK/r+UhpRSlGgVSzJoFkdApBXAp+c6NnV9lChoBmgJaA9DCN0HILWJ0/i/lIaUUpRoFUsyaBZHQKQVg2R7qpt1fZQoaAZoCWgPQwjoacAg6dP6v5SGlFKUaBVLMmgWR0CkF1U4JeE7dX2UKGgGaAloD0MIBMjQsYOK9b+UhpRSlGgVSzJoFkdApBcYnWrfcnV9lChoBmgJaA9DCP2k2qfj8fK/lIaUUpRoFUsyaBZHQKQW2drftQd1fZQoaAZoCWgPQwibqntkcxX7v5SGlFKUaBVLMmgWR0CkFpwdjoZAdX2UKGgGaAloD0MI6kDWU6tv+r+UhpRSlGgVSzJoFkdApBheeWfK6nV9lChoBmgJaA9DCFpiZTTyOfm/lIaUUpRoFUsyaBZHQKQYIfV7QcB1fZQoaAZoCWgPQwiXqx+b5If4v5SGlFKUaBVLMmgWR0CkF+N+1Bt2dX2UKGgGaAloD0MI2EenrnyW/L+UhpRSlGgVSzJoFkdApBel0NjLCHV9lChoBmgJaA9DCHi2R2+4D/+/lIaUUpRoFUsyaBZHQKQZYPd2xIJ1fZQoaAZoCWgPQwirmEo/4Szzv5SGlFKUaBVLMmgWR0CkGSRjz7MxdX2UKGgGaAloD0MIJ/kRv2KN9b+UhpRSlGgVSzJoFkdApBjluHerMnV9lChoBmgJaA9DCEVI3c6+cgDAlIaUUpRoFUsyaBZHQKQYqIfr8ix1fZQoaAZoCWgPQwha9iSwOcf3v5SGlFKUaBVLMmgWR0CkGmwoCuEFdX2UKGgGaAloD0MIdChDVUzl8b+UhpRSlGgVSzJoFkdApBovtfG+9XV9lChoBmgJaA9DCE4lA0AVdwrAlIaUUpRoFUsyaBZHQKQZ8R5C4SZ1fZQoaAZoCWgPQwh88xsmGqT5v5SGlFKUaBVLMmgWR0CkGbOLiuMddX2UKGgGaAloD0MIhv90AwVe97+UhpRSlGgVSzJoFkdApBtu1D0Dl3V9lChoBmgJaA9DCEaZDTLJSPi/lIaUUpRoFUsyaBZHQKQbMnH/9511fZQoaAZoCWgPQwhNnrKaruf2v5SGlFKUaBVLMmgWR0CkGvOTaCcxdX2UKGgGaAloD0MIFt16TQ/K9L+UhpRSlGgVSzJoFkdApBq2CI1tO3V9lChoBmgJaA9DCFnDRe7pSgDAlIaUUpRoFUsyaBZHQKQca3++/QB1fZQoaAZoCWgPQwgiqvBnePPxv5SGlFKUaBVLMmgWR0CkHDAE2YOUdX2UKGgGaAloD0MI205bI4Kx+L+UhpRSlGgVSzJoFkdApBvx2ECeVnV9lChoBmgJaA9DCAXeyafH9ve/lIaUUpRoFUsyaBZHQKQbtPAO8TV1fZQoaAZoCWgPQwgfFJSilTv3v5SGlFKUaBVLMmgWR0CkHXlTm4iHdX2UKGgGaAloD0MIKV5lbVN897+UhpRSlGgVSzJoFkdApB09As052nV9lChoBmgJaA9DCGNGeHsQIgDAlIaUUpRoFUsyaBZHQKQc/pPAO8V1fZQoaAZoCWgPQwj12QHXFTP3v5SGlFKUaBVLMmgWR0CkHMEeyRjjdX2UKGgGaAloD0MIC5xsA3eg/r+UhpRSlGgVSzJoFkdApB555JK8MHV9lChoBmgJaA9DCNj1C3bD9vO/lIaUUpRoFUsyaBZHQKQePagVXV91fZQoaAZoCWgPQwgd6QyMvOz3v5SGlFKUaBVLMmgWR0CkHf7jcVQAdX2UKGgGaAloD0MIOslWl1PC9L+UhpRSlGgVSzJoFkdApB3BWq94/3V9lChoBmgJaA9DCCVATS1bq/y/lIaUUpRoFUsyaBZHQKQfjDwYtQN1fZQoaAZoCWgPQwhfm42VmKfwv5SGlFKUaBVLMmgWR0CkH0/6wdKedX2UKGgGaAloD0MIe2mKAKc3+r+UhpRSlGgVSzJoFkdApB8RbY9PlHV9lChoBmgJaA9DCDeq04GsRwPAlIaUUpRoFUsyaBZHQKQe09JSR8t1fZQoaAZoCWgPQwhWn6ut2P8EwJSGlFKUaBVLMmgWR0CkIIyDyvs7dX2UKGgGaAloD0MIIUCGjh0U8b+UhpRSlGgVSzJoFkdApCBQFgUlA3V9lChoBmgJaA9DCLzOhvwzIwHAlIaUUpRoFUsyaBZHQKQgEYekpJB1fZQoaAZoCWgPQwgcfGEyVXD1v5SGlFKUaBVLMmgWR0CkH9P7vXsgdX2UKGgGaAloD0MITDPd66T+A8CUhpRSlGgVSzJoFkdApCGWf7Jnx3V9lChoBmgJaA9DCHAH6pRHN/e/lIaUUpRoFUsyaBZHQKQhWiGFi8Z1fZQoaAZoCWgPQwg34sluZjQDwJSGlFKUaBVLMmgWR0CkIRuQZGaydX2UKGgGaAloD0MILEfIQJ4d/b+UhpRSlGgVSzJoFkdApCDeBlMAWHV9lChoBmgJaA9DCPRqgNJQI/O/lIaUUpRoFUsyaBZHQKQij+c6Nl11fZQoaAZoCWgPQwjgha3Zykvyv5SGlFKUaBVLMmgWR0CkIlOZ1FH8dX2UKGgGaAloD0MIHT1+b9Mf9L+UhpRSlGgVSzJoFkdApCIU6T4cm3V9lChoBmgJaA9DCLRyLzArlOm/lIaUUpRoFUsyaBZHQKQh1yTY/V11fZQoaAZoCWgPQwjrw3qjVpj5v5SGlFKUaBVLMmgWR0CkI5r61stTdX2UKGgGaAloD0MI+KV+3lQk9b+UhpRSlGgVSzJoFkdApCNeqxTsIHV9lChoBmgJaA9DCNo391ePu/G/lIaUUpRoFUsyaBZHQKQjIBz3h4t1fZQoaAZoCWgPQwiW6ZeIty4GwJSGlFKUaBVLMmgWR0CkIuKcd5prdX2UKGgGaAloD0MIibFMv0TcAcCUhpRSlGgVSzJoFkdApCS05U96knV9lChoBmgJaA9DCM+EJoklpfa/lIaUUpRoFUsyaBZHQKQkeIhQm/p1fZQoaAZoCWgPQwi4AZ8fRkj1v5SGlFKUaBVLMmgWR0CkJDpXhfjTdX2UKGgGaAloD0MIIqgavRrg9L+UhpRSlGgVSzJoFkdApCP8wlByCHV9lChoBmgJaA9DCED35cx2RfG/lIaUUpRoFUsyaBZHQKQlydK/VRV1fZQoaAZoCWgPQwjCTUaVYXwCwJSGlFKUaBVLMmgWR0CkJY1x82JjdX2UKGgGaAloD0MI3EqvzcbK97+UhpRSlGgVSzJoFkdApCVO1fE4vXV9lChoBmgJaA9DCFq77UJzXfy/lIaUUpRoFUsyaBZHQKQlETviLl51fZQoaAZoCWgPQwhAoZ4+Ap8FwJSGlFKUaBVLMmgWR0CkJturZJ05dX2UKGgGaAloD0MI0Lnb9dL0A8CUhpRSlGgVSzJoFkdApCafUDuBtnV9lChoBmgJaA9DCO3UXG4wFPa/lIaUUpRoFUsyaBZHQKQmYJswco91fZQoaAZoCWgPQwhfs1w2OocBwJSGlFKUaBVLMmgWR0CkJiM2eg+RdX2UKGgGaAloD0MIAb1w58LI/b+UhpRSlGgVSzJoFkdApCfpiNKh+XV9lChoBmgJaA9DCLtjsU0qGva/lIaUUpRoFUsyaBZHQKQnrSro4dZ1fZQoaAZoCWgPQwjMCdrk8En6v5SGlFKUaBVLMmgWR0CkJ26hHskZdX2UKGgGaAloD0MIuwz/6QaqBMCUhpRSlGgVSzJoFkdApCcxMFlkH3V9lChoBmgJaA9DCAaE1sOXKQXAlIaUUpRoFUsyaBZHQKQo/baAWi11fZQoaAZoCWgPQwjQCaGDLkEAwJSGlFKUaBVLMmgWR0CkKMFnZkCndX2UKGgGaAloD0MIQQ5KmGl7/7+UhpRSlGgVSzJoFkdApCiCxmkFfXV9lChoBmgJaA9DCBFV+DO8WfW/lIaUUpRoFUsyaBZHQKQoRUZvUBp1fZQoaAZoCWgPQwiBfAkVHN7rv5SGlFKUaBVLMmgWR0CkKhWTX8O1dX2UKGgGaAloD0MI5xn7ko3HB8CUhpRSlGgVSzJoFkdApCnZY3eenXV9lChoBmgJaA9DCFDkSdI1MwXAlIaUUpRoFUsyaBZHQKQpmu+RHPN1fZQoaAZoCWgPQwhQcodNZKb1v5SGlFKUaBVLMmgWR0CkKV109yLidX2UKGgGaAloD0MILPGAsimX+r+UhpRSlGgVSzJoFkdApCsnBrN4aHV9lChoBmgJaA9DCHGNz2T/TBHAlIaUUpRoFUsyaBZHQKQq6rFOwgV1fZQoaAZoCWgPQwiLFqBtNWv8v5SGlFKUaBVLMmgWR0CkKqwIUrTZdX2UKGgGaAloD0MIiV5GsdxyAMCUhpRSlGgVSzJoFkdApCpunEVFhHV9lChoBmgJaA9DCHo01ZP5x/a/lIaUUpRoFUsyaBZHQKQsOjyFwkx1fZQoaAZoCWgPQwi5cCAkC1j9v5SGlFKUaBVLMmgWR0CkK/3rt3OfdX2UKGgGaAloD0MIlGsKZHYW7b+UhpRSlGgVSzJoFkdApCu/ag261HV9lChoBmgJaA9DCGPS30vhQf+/lIaUUpRoFUsyaBZHQKQrgfra/RF1fZQoaAZoCWgPQwgdPulEgqkCwJSGlFKUaBVLMmgWR0CkLXSPU8V6dX2UKGgGaAloD0MILJ0PzxLk7b+UhpRSlGgVSzJoFkdApC04Nb1RL3V9lChoBmgJaA9DCLJHqBlSBQXAlIaUUpRoFUsyaBZHQKQs+lhw2l51fZQoaAZoCWgPQwgi36XUJcMFwJSGlFKUaBVLMmgWR0CkLLzLOiWWdX2UKGgGaAloD0MIN8XjolpE/L+UhpRSlGgVSzJoFkdApC6g4lyBCnV9lChoBmgJaA9DCMtneR7cXfa/lIaUUpRoFUsyaBZHQKQuZJQtSQ51fZQoaAZoCWgPQwjYEByXcVMCwJSGlFKUaBVLMmgWR0CkLiYk3S8bdX2UKGgGaAloD0MI9DP1ukWg97+UhpRSlGgVSzJoFkdApC3op8WsR3V9lChoBmgJaA9DCCs1e6AVmPu/lIaUUpRoFUsyaBZHQKQvsUKzAvd1fZQoaAZoCWgPQwgmpgux+uP5v5SGlFKUaBVLMmgWR0CkL3TvJA+qdX2UKGgGaAloD0MIByXMtP3r97+UhpRSlGgVSzJoFkdApC82by6MBXV9lChoBmgJaA9DCAcKvJNPD/m/lIaUUpRoFUsyaBZHQKQu+Otnwod1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (723 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.3259474114514886, "std_reward": 0.8996517664953833, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T04:44:57.398928"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9b4488ea7e05c871b24a24ea2d7647690440b024c0dd6b71244c7ec3d6a8e45
3
+ size 3212