Upload files: v0.1.2.dev0
Browse files- README.md +28 -0
- asdff/__init__.py +10 -0
- asdff/__version__.py +1 -0
- asdff/base.py +152 -0
- asdff/sd.py +51 -0
- asdff/utils.py +70 -0
- asdff/yolo.py +80 -0
- pipeline.py +1 -0
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: agpl-3.0
|
3 |
+
tags:
|
4 |
+
- pytorch
|
5 |
+
- diffusers
|
6 |
+
---
|
7 |
+
|
8 |
+
# Custom Pipeline for Auto Inpainting
|
9 |
+
|
10 |
+
```py
|
11 |
+
import torch
|
12 |
+
from diffusers import DiffusionPipeline
|
13 |
+
|
14 |
+
pipe = DiffusionPipeline.from_pretrained(
|
15 |
+
"stablediffusionapi/counterfeit-v30",
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
custom_pipeline="Bingsu/adsdcn_pipeline"
|
18 |
+
)
|
19 |
+
pipe.safety_checker = None
|
20 |
+
pipe.to("cuda")
|
21 |
+
|
22 |
+
common = {"prompt": "masterpiece, best quality, 1girl", "num_inference_steps": 28}
|
23 |
+
result = pipe(common=common)
|
24 |
+
|
25 |
+
images = result[0]
|
26 |
+
```
|
27 |
+
|
28 |
+
github: https://github.com/Bing-su/asdff
|
asdff/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .__version__ import __version__
|
2 |
+
from .sd import AdCnPipeline, AdPipeline
|
3 |
+
from .yolo import yolo_detector
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"AdPipeline",
|
7 |
+
"AdCnPipeline",
|
8 |
+
"yolo_detector",
|
9 |
+
"__version__",
|
10 |
+
]
|
asdff/__version__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__version__ = "0.1.2.dev0"
|
asdff/base.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from abc import ABC, abstractmethod
|
5 |
+
from typing import Any, Callable, Iterable, List, Mapping, Optional
|
6 |
+
|
7 |
+
from diffusers.utils import logging
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from asdff.utils import (
|
11 |
+
ADOutput,
|
12 |
+
bbox_padding,
|
13 |
+
composite,
|
14 |
+
mask_dilate,
|
15 |
+
mask_gaussian_blur,
|
16 |
+
)
|
17 |
+
from asdff.yolo import yolo_detector
|
18 |
+
|
19 |
+
logger = logging.get_logger("diffusers")
|
20 |
+
|
21 |
+
|
22 |
+
DetectorType = Callable[[Image.Image], Optional[List[Image.Image]]]
|
23 |
+
|
24 |
+
|
25 |
+
def ordinal(n: int) -> str:
|
26 |
+
d = {1: "st", 2: "nd", 3: "rd"}
|
27 |
+
return str(n) + ("th" if 11 <= n % 100 <= 13 else d.get(n % 10, "th"))
|
28 |
+
|
29 |
+
|
30 |
+
class AdPipelineBase(ABC):
|
31 |
+
@property
|
32 |
+
@abstractmethod
|
33 |
+
def inpaint_pipeline(self) -> Callable:
|
34 |
+
raise NotImplementedError
|
35 |
+
|
36 |
+
@property
|
37 |
+
@abstractmethod
|
38 |
+
def txt2img_class(self) -> type:
|
39 |
+
raise NotImplementedError
|
40 |
+
|
41 |
+
def __call__( # noqa: C901
|
42 |
+
self,
|
43 |
+
common: Mapping[str, Any] | None = None,
|
44 |
+
txt2img_only: Mapping[str, Any] | None = None,
|
45 |
+
inpaint_only: Mapping[str, Any] | None = None,
|
46 |
+
images: Image.Image | Iterable[Image.Image] | None = None,
|
47 |
+
detectors: DetectorType | Iterable[DetectorType] | None = None,
|
48 |
+
mask_dilation: int = 4,
|
49 |
+
mask_blur: int = 4,
|
50 |
+
mask_padding: int = 32,
|
51 |
+
):
|
52 |
+
if common is None:
|
53 |
+
common = {}
|
54 |
+
if txt2img_only is None:
|
55 |
+
txt2img_only = {}
|
56 |
+
if inpaint_only is None:
|
57 |
+
inpaint_only = {}
|
58 |
+
if "strength" not in inpaint_only:
|
59 |
+
inpaint_only = {**inpaint_only, "strength": 0.4}
|
60 |
+
|
61 |
+
if detectors is None:
|
62 |
+
detectors = [self.default_detector]
|
63 |
+
elif not isinstance(detectors, Iterable):
|
64 |
+
detectors = [detectors]
|
65 |
+
|
66 |
+
if images and txt2img_only:
|
67 |
+
logger.warning(
|
68 |
+
"Both `images` and `txt2img_only` are specified. if `images` is specified, `txt2img_only` is ignored."
|
69 |
+
)
|
70 |
+
|
71 |
+
if images is None:
|
72 |
+
txt2img_args = self._get_txt2img_args(common, txt2img_only)
|
73 |
+
txt2img_output = self.txt2img_class.__call__(self, **txt2img_args)
|
74 |
+
txt2img_images: list[Image.Image] = txt2img_output[0]
|
75 |
+
else:
|
76 |
+
if not isinstance(images, Iterable):
|
77 |
+
txt2img_images = [images]
|
78 |
+
else:
|
79 |
+
txt2img_images = images
|
80 |
+
|
81 |
+
init_images = []
|
82 |
+
final_images = []
|
83 |
+
|
84 |
+
for i, init_image in enumerate(txt2img_images):
|
85 |
+
init_images.append(init_image.copy())
|
86 |
+
final_image = None
|
87 |
+
|
88 |
+
for j, detector in enumerate(detectors):
|
89 |
+
masks = detector(init_image)
|
90 |
+
if masks is None:
|
91 |
+
logger.info(
|
92 |
+
f"No object detected on {ordinal(i + 1)} image with {ordinal(j + 1)} detector."
|
93 |
+
)
|
94 |
+
continue
|
95 |
+
|
96 |
+
for k, mask in enumerate(masks):
|
97 |
+
mask = mask.convert("L")
|
98 |
+
mask = mask_dilate(mask, mask_dilation)
|
99 |
+
bbox = mask.getbbox()
|
100 |
+
if bbox is None:
|
101 |
+
logger.info(f"No object in {ordinal(k + 1)} mask.")
|
102 |
+
continue
|
103 |
+
mask = mask_gaussian_blur(mask, mask_blur)
|
104 |
+
bbox_padded = bbox_padding(bbox, init_image.size, mask_padding)
|
105 |
+
|
106 |
+
crop_image = init_image.crop(bbox_padded)
|
107 |
+
crop_mask = mask.crop(bbox_padded)
|
108 |
+
|
109 |
+
inpaint_args = self._get_inpaint_args(common, inpaint_only)
|
110 |
+
inpaint_args["image"] = crop_image
|
111 |
+
inpaint_args["mask_image"] = crop_mask
|
112 |
+
inpaint_output = self.inpaint_pipeline(**inpaint_args)
|
113 |
+
inpaint_image: Image.Image = inpaint_output[0][0]
|
114 |
+
final_image = composite(
|
115 |
+
init=init_image,
|
116 |
+
mask=mask,
|
117 |
+
gen=inpaint_image,
|
118 |
+
bbox_padded=bbox_padded,
|
119 |
+
)
|
120 |
+
init_image = final_image
|
121 |
+
|
122 |
+
if final_image is not None:
|
123 |
+
final_images.append(final_image)
|
124 |
+
|
125 |
+
return ADOutput(images=final_images, init_images=init_images)
|
126 |
+
|
127 |
+
@property
|
128 |
+
def default_detector(self) -> Callable[..., list[Image.Image] | None]:
|
129 |
+
return yolo_detector
|
130 |
+
|
131 |
+
def _get_txt2img_args(
|
132 |
+
self, common: Mapping[str, Any], txt2img_only: Mapping[str, Any]
|
133 |
+
):
|
134 |
+
return {**common, **txt2img_only, "output_type": "pil"}
|
135 |
+
|
136 |
+
def _get_inpaint_args(
|
137 |
+
self, common: Mapping[str, Any], inpaint_only: Mapping[str, Any]
|
138 |
+
):
|
139 |
+
common = dict(common)
|
140 |
+
sig = inspect.signature(self.inpaint_pipeline)
|
141 |
+
if (
|
142 |
+
"control_image" in sig.parameters
|
143 |
+
and "control_image" not in common
|
144 |
+
and "image" in common
|
145 |
+
):
|
146 |
+
common["control_image"] = common.pop("image")
|
147 |
+
return {
|
148 |
+
**common,
|
149 |
+
**inpaint_only,
|
150 |
+
"num_images_per_prompt": 1,
|
151 |
+
"output_type": "pil",
|
152 |
+
}
|
asdff/sd.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from functools import cached_property
|
4 |
+
|
5 |
+
from diffusers import (
|
6 |
+
StableDiffusionControlNetInpaintPipeline,
|
7 |
+
StableDiffusionControlNetPipeline,
|
8 |
+
StableDiffusionInpaintPipeline,
|
9 |
+
StableDiffusionPipeline,
|
10 |
+
)
|
11 |
+
|
12 |
+
from asdff.base import AdPipelineBase
|
13 |
+
|
14 |
+
|
15 |
+
class AdPipeline(AdPipelineBase, StableDiffusionPipeline):
|
16 |
+
@cached_property
|
17 |
+
def inpaint_pipeline(self):
|
18 |
+
return StableDiffusionInpaintPipeline(
|
19 |
+
vae=self.vae,
|
20 |
+
text_encoder=self.text_encoder,
|
21 |
+
tokenizer=self.tokenizer,
|
22 |
+
unet=self.unet,
|
23 |
+
scheduler=self.scheduler,
|
24 |
+
safety_checker=self.safety_checker,
|
25 |
+
feature_extractor=self.feature_extractor,
|
26 |
+
requires_safety_checker=self.config.requires_safety_checker,
|
27 |
+
)
|
28 |
+
|
29 |
+
@property
|
30 |
+
def txt2img_class(self):
|
31 |
+
return StableDiffusionPipeline
|
32 |
+
|
33 |
+
|
34 |
+
class AdCnPipeline(AdPipelineBase, StableDiffusionControlNetPipeline):
|
35 |
+
@cached_property
|
36 |
+
def inpaint_pipeline(self):
|
37 |
+
return StableDiffusionControlNetInpaintPipeline(
|
38 |
+
vae=self.vae,
|
39 |
+
text_encoder=self.text_encoder,
|
40 |
+
tokenizer=self.tokenizer,
|
41 |
+
unet=self.unet,
|
42 |
+
controlnet=self.controlnet,
|
43 |
+
scheduler=self.scheduler,
|
44 |
+
safety_checker=self.safety_checker,
|
45 |
+
feature_extractor=self.feature_extractor,
|
46 |
+
requires_safety_checker=self.config.requires_safety_checker,
|
47 |
+
)
|
48 |
+
|
49 |
+
@property
|
50 |
+
def txt2img_class(self):
|
51 |
+
return StableDiffusionControlNetPipeline
|
asdff/utils.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from diffusers.utils import BaseOutput
|
8 |
+
from PIL import Image, ImageFilter, ImageOps
|
9 |
+
|
10 |
+
|
11 |
+
@dataclass
|
12 |
+
class ADOutput(BaseOutput):
|
13 |
+
images: list[Image.Image]
|
14 |
+
init_images: list[Image.Image]
|
15 |
+
|
16 |
+
|
17 |
+
def mask_dilate(image: Image.Image, value: int = 4) -> Image.Image:
|
18 |
+
if value <= 0:
|
19 |
+
return image
|
20 |
+
|
21 |
+
arr = np.array(image)
|
22 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (value, value))
|
23 |
+
dilated = cv2.dilate(arr, kernel, iterations=1)
|
24 |
+
return Image.fromarray(dilated)
|
25 |
+
|
26 |
+
|
27 |
+
def mask_gaussian_blur(image: Image.Image, value: int = 4) -> Image.Image:
|
28 |
+
if value <= 0:
|
29 |
+
return image
|
30 |
+
|
31 |
+
blur = ImageFilter.GaussianBlur(value)
|
32 |
+
return image.filter(blur)
|
33 |
+
|
34 |
+
|
35 |
+
def bbox_padding(
|
36 |
+
bbox: tuple[int, int, int, int], image_size: tuple[int, int], value: int = 32
|
37 |
+
) -> tuple[int, int, int, int]:
|
38 |
+
if value <= 0:
|
39 |
+
return bbox
|
40 |
+
|
41 |
+
arr = np.array(bbox).reshape(2, 2)
|
42 |
+
arr[0] -= value
|
43 |
+
arr[1] += value
|
44 |
+
arr = np.clip(arr, (0, 0), image_size)
|
45 |
+
return tuple(arr.flatten())
|
46 |
+
|
47 |
+
|
48 |
+
def composite(
|
49 |
+
init: Image.Image,
|
50 |
+
mask: Image.Image,
|
51 |
+
gen: Image.Image,
|
52 |
+
bbox_padded: tuple[int, int, int, int],
|
53 |
+
) -> Image.Image:
|
54 |
+
img_masked = Image.new("RGBa", init.size)
|
55 |
+
img_masked.paste(
|
56 |
+
init.convert("RGBA").convert("RGBa"),
|
57 |
+
mask=ImageOps.invert(mask),
|
58 |
+
)
|
59 |
+
img_masked = img_masked.convert("RGBA")
|
60 |
+
|
61 |
+
size = (
|
62 |
+
bbox_padded[2] - bbox_padded[0],
|
63 |
+
bbox_padded[3] - bbox_padded[1],
|
64 |
+
)
|
65 |
+
resized = gen.resize(size)
|
66 |
+
|
67 |
+
output = Image.new("RGBA", init.size)
|
68 |
+
output.paste(resized, bbox_padded)
|
69 |
+
output.alpha_composite(img_masked)
|
70 |
+
return output.convert("RGB")
|
asdff/yolo.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from PIL import Image, ImageDraw
|
9 |
+
from torchvision.transforms.functional import to_pil_image
|
10 |
+
|
11 |
+
try:
|
12 |
+
from ultralytics import YOLO
|
13 |
+
except ModuleNotFoundError:
|
14 |
+
print("Please install ultralytics using `pip install ultralytics`")
|
15 |
+
raise
|
16 |
+
|
17 |
+
|
18 |
+
def create_mask_from_bbox(
|
19 |
+
bboxes: np.ndarray, shape: tuple[int, int]
|
20 |
+
) -> list[Image.Image]:
|
21 |
+
"""
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
bboxes: list[list[float]]
|
25 |
+
list of [x1, y1, x2, y2]
|
26 |
+
bounding boxes
|
27 |
+
shape: tuple[int, int]
|
28 |
+
shape of the image (width, height)
|
29 |
+
|
30 |
+
Returns
|
31 |
+
-------
|
32 |
+
masks: list[Image.Image]
|
33 |
+
A list of masks
|
34 |
+
|
35 |
+
"""
|
36 |
+
masks = []
|
37 |
+
for bbox in bboxes:
|
38 |
+
mask = Image.new("L", shape, "black")
|
39 |
+
mask_draw = ImageDraw.Draw(mask)
|
40 |
+
mask_draw.rectangle(bbox, fill="white")
|
41 |
+
masks.append(mask)
|
42 |
+
return masks
|
43 |
+
|
44 |
+
|
45 |
+
def mask_to_pil(masks: torch.Tensor, shape: tuple[int, int]) -> list[Image.Image]:
|
46 |
+
"""
|
47 |
+
Parameters
|
48 |
+
----------
|
49 |
+
masks: torch.Tensor, dtype=torch.float32, shape=(N, H, W).
|
50 |
+
The device can be CUDA, but `to_pil_image` takes care of that.
|
51 |
+
|
52 |
+
shape: tuple[int, int]
|
53 |
+
(width, height) of the original image
|
54 |
+
|
55 |
+
Returns
|
56 |
+
-------
|
57 |
+
images: list[Image.Image]
|
58 |
+
"""
|
59 |
+
n = masks.shape[0]
|
60 |
+
return [to_pil_image(masks[i], mode="L").resize(shape) for i in range(n)]
|
61 |
+
|
62 |
+
|
63 |
+
def yolo_detector(
|
64 |
+
image: Image.Image, model_path: str | Path | None = None, confidence: float = 0.3
|
65 |
+
) -> list[Image.Image] | None:
|
66 |
+
if not model_path:
|
67 |
+
model_path = hf_hub_download("Bingsu/adetailer", "face_yolov8n.pt")
|
68 |
+
model = YOLO(model_path)
|
69 |
+
pred = model(image, conf=confidence)
|
70 |
+
|
71 |
+
bboxes = pred[0].boxes.xyxy.cpu().numpy()
|
72 |
+
if bboxes.size == 0:
|
73 |
+
return None
|
74 |
+
|
75 |
+
if pred[0].masks is None:
|
76 |
+
masks = create_mask_from_bbox(bboxes, image.size)
|
77 |
+
else:
|
78 |
+
masks = mask_to_pil(pred[0].masks.data, image.size)
|
79 |
+
|
80 |
+
return masks
|
pipeline.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from asdff import AdCnPipeline # noqa: F401
|