Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
widget:
|
3 |
+
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
|
4 |
+
candidate_labels: 기타 치는 고양이, 피아노 치는 강아지
|
5 |
+
example_title: Guitar, cat and dog
|
6 |
+
language: ko
|
7 |
+
license: mit
|
8 |
+
---
|
9 |
+
|
10 |
+
# clip-vit-large-patch14-ko
|
11 |
+
|
12 |
+
Korean CLIP model trained by [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813)
|
13 |
+
|
14 |
+
[Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813)로 학습된 한국어 CLIP 모델입니다.
|
15 |
+
|
16 |
+
훈련 코드: <https://github.com/Bing-su/KoCLIP_training_code>
|
17 |
+
|
18 |
+
사용된 데이터: AIHUB에 있는 모든 한국어-영어 병렬 데이터
|
19 |
+
|
20 |
+
## How to Use
|
21 |
+
|
22 |
+
#### 1.
|
23 |
+
|
24 |
+
```python
|
25 |
+
import requests
|
26 |
+
import torch
|
27 |
+
from PIL import Image
|
28 |
+
from transformers import AutoModel, AutoProcessor
|
29 |
+
|
30 |
+
repo = "Bingsu/clip-vit-large-patch14-ko"
|
31 |
+
model = AutoModel.from_pretrained(repo)
|
32 |
+
processor = AutoProcessor.from_pretrained(repo)
|
33 |
+
|
34 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
35 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
36 |
+
inputs = processor(text=["고양이 두 마리", "개 두 마리"], images=image, return_tensors="pt", padding=True)
|
37 |
+
with torch.inference_mode():
|
38 |
+
outputs = model(**inputs)
|
39 |
+
logits_per_image = outputs.logits_per_image
|
40 |
+
probs = logits_per_image.softmax(dim=1)
|
41 |
+
```
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> probs
|
45 |
+
tensor([[0.9974, 0.0026]])
|
46 |
+
```
|
47 |
+
|
48 |
+
#### 2.
|
49 |
+
|
50 |
+
```python
|
51 |
+
from transformers import pipeline
|
52 |
+
|
53 |
+
repo = "Bingsu/clip-vit-large-patch14-ko"
|
54 |
+
pipe = pipeline("zero-shot-image-classification", model=repo)
|
55 |
+
|
56 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
57 |
+
result = pipe(images=url, candidate_labels=["고양이 한 마리", "고양이 두 마리", "분홍색 소파에 드러누운 고양이 친구들"], hypothesis_template="{}")
|
58 |
+
```
|
59 |
+
|
60 |
+
```python
|
61 |
+
>>> result
|
62 |
+
[{'score': 0.9907576441764832, 'label': '분홍색 소파에 드러누운 고양이 친구들'},
|
63 |
+
{'score': 0.009206341579556465, 'label': '고양이 두 마리'},
|
64 |
+
{'score': 3.606083555496298e-05, 'label': '고양이 한 마리'}]
|
65 |
+
```
|