Jeroen Van Goey
commited on
Commit
•
0db9094
1
Parent(s):
861d1ac
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 271.97 +/- 16.91
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff83c1b1200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff83c1b1290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff83c1b1320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff83c1b13b0>", "_build": "<function ActorCriticPolicy._build at 0x7ff83c1b1440>", "forward": "<function ActorCriticPolicy.forward at 0x7ff83c1b14d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff83c1b1560>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff83c1b15f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff83c1b1680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff83c1b1710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff83c1b17a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff83c202360>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653143734.176374, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzUxTu1wrILoKcEQzLEk9sE9QSjstusezAACAPwAAgD/mYcI9r14kP3oHAz0mDRC/qJ34PcO1Y7wAAAAAAAAAAFojGb5sLsg+4zlSPpsG5L7pjjK9onTKPQAAAAAAAAAAzafgPB9dtbne4XG9H1bfsmAFr7o7TNgzAACAPwAAgD+znqK99vRNuuuNiLS8f8KvUcLVOnJulDMAAAAAAACAP1oFEr6IHZM+mn8HPNPirL77kcm9cuCaOwAAAAAAAAAAQMYJPrbGZj8vU0U95fUYv+OYAT7LxJa7AAAAAAAAAAANHI89yM6KP+1Rij5UThq/wW0KPlWABj4AAAAAAAAAAIA5ez1PPya8ipMRvmYp1rzuhes61rMyOwAAgD8AAIA/muOaPDKXtD/qIuw+QaEkvWavPLxipjQ6AAAAAAAAAADNKAK9Qp6MPv7/mT3WuOG+3SxmO5gY7jwAAAAAAAAAADOdSry/IRU/ElCbPGR6Fb8i44w8KLBxvAAAAAAAAAAAwJSGPsGydj+sbSU+dY7avllBuj5qq8E6AAAAAAAAAADNnKM6TlaKPy0l77r7sjW/U6vxuSfPQjwAAAAAAAAAAM0dGL2Paku6WRuJPBy+oDGEIJ47YXeJswAAgD8AAIA/Gv2cvdEoqj4dr3y96jfmvt51TL2OJLS7AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7rQ1Iph4cECUhpRSlIwBbJRLtIwBdJRHQKmkMRe1KGt1fZQoaAZoCWgPQwheu7ThcGxzQJSGlFKUaBVL7WgWR0CppFbpeNT+dX2UKGgGaAloD0MItMpMab3fcECUhpRSlGgVS/VoFkdAqaSQwTM7l3V9lChoBmgJaA9DCHptNlbiNHBAlIaUUpRoFUuzaBZHQKmkrjn3cpN1fZQoaAZoCWgPQwgKKxVUFKFyQJSGlFKUaBVL2WgWR0CppLeeWfK7dX2UKGgGaAloD0MIrg/rjdrQcUCUhpRSlGgVS91oFkdAqaTJH7P6bnV9lChoBmgJaA9DCI0LB0JyUnBAlIaUUpRoFUu2aBZHQKmk0Q4jrzJ1fZQoaAZoCWgPQwgZyLPLdz1xQJSGlFKUaBVL42gWR0CppNyxA0KrdX2UKGgGaAloD0MIGm7A5wdgc0CUhpRSlGgVS95oFkdAqaUaxC6YmnV9lChoBmgJaA9DCH15AfZR1nFAlIaUUpRoFUvaaBZHQKmlHVNHpbF1fZQoaAZoCWgPQwiNCpxsAwJwQJSGlFKUaBVLu2gWR0CppVet8uzydX2UKGgGaAloD0MIbf30n/W3ckCUhpRSlGgVS+NoFkdAqaVdie/Ya3V9lChoBmgJaA9DCFR0JJe/MnFAlIaUUpRoFUu2aBZHQKmlirqdH2B1fZQoaAZoCWgPQwheLXdmwopxQJSGlFKUaBVLvmgWR0CppfF6Z6UrdX2UKGgGaAloD0MI8tJNYlBUckCUhpRSlGgVS75oFkdAqaYVBMSK33V9lChoBmgJaA9DCMYVF0flknNAlIaUUpRoFUvKaBZHQKmmNl2eQMh1fZQoaAZoCWgPQwhGelG7nw1xQJSGlFKUaBVLxWgWR0CpplEFwDNhdX2UKGgGaAloD0MIFmniHSCccECUhpRSlGgVS51oFkdAqaZc2kzoEHV9lChoBmgJaA9DCALXFTPCkXJAlIaUUpRoFUukaBZHQKmmaGwA2ht1fZQoaAZoCWgPQwhMT1jiQddxQJSGlFKUaBVL3WgWR0Cppm4+r2g4dX2UKGgGaAloD0MIq0GY230WdECUhpRSlGgVS8JoFkdAqabNxKg7HXV9lChoBmgJaA9DCCC1iZO7iXNAlIaUUpRoFUvZaBZHQKmm3hfjS5R1fZQoaAZoCWgPQwhYycfugmNzQJSGlFKUaBVL7GgWR0CppvTj3mFKdX2UKGgGaAloD0MI7URJSKS2c0CUhpRSlGgVS+ZoFkdAqacIUxmCiHV9lChoBmgJaA9DCFSNXg3Qm3FAlIaUUpRoFUu3aBZHQKmnMJ1JUYN1fZQoaAZoCWgPQwhFhH8RdOlwQJSGlFKUaBVLvWgWR0Cpp0Sa3I+4dX2UKGgGaAloD0MIsWmlEIivcUCUhpRSlGgVS+VoFkdAqadiO5rgwXV9lChoBmgJaA9DCN0/FqLDTXJAlIaUUpRoFUvuaBZHQKmnen7YTTR1fZQoaAZoCWgPQwhPPdLgtkRyQJSGlFKUaBVL0mgWR0Cpp6SBTXJ6dX2UKGgGaAloD0MIb4Jvmv6PcECUhpRSlGgVS8xoFkdAqaf/FYMfBHV9lChoBmgJaA9DCCrG+ZvQi29AlIaUUpRoFUumaBZHQKmoFDhLoOh1fZQoaAZoCWgPQwjTFtf4jHFzQJSGlFKUaBVLrGgWR0CpqBQljVhDdX2UKGgGaAloD0MIHqUSntBYcUCUhpRSlGgVS9RoFkdAqag4gxJumHV9lChoBmgJaA9DCKZiY14HtnNAlIaUUpRoFUvbaBZHQKmoZycTakB1fZQoaAZoCWgPQwim8naE09tzQJSGlFKUaBVL3mgWR0CpqJ0YKpkxdX2UKGgGaAloD0MIvVXXoZpFcUCUhpRSlGgVS8JoFkdAqai5oEjgRHV9lChoBmgJaA9DCPBpTl4kqHJAlIaUUpRoFUv7aBZHQKmo14yoGY91fZQoaAZoCWgPQwhmEYqtIDVyQJSGlFKUaBVL0WgWR0CpqO4D9wWFdX2UKGgGaAloD0MIpI0j1iInckCUhpRSlGgVS9BoFkdAqakTojfNzXV9lChoBmgJaA9DCNHP1OuWcHJAlIaUUpRoFUu/aBZHQKmpFTjNpud1fZQoaAZoCWgPQwiFQ2/xMPNwQJSGlFKUaBVL22gWR0CpqRsefZmJdX2UKGgGaAloD0MIgT0mUtqbckCUhpRSlGgVS9NoFkdAqalVUMoc73V9lChoBmgJaA9DCI6R7BEqg3BAlIaUUpRoFUu9aBZHQKmpf48EFGJ1fZQoaAZoCWgPQwh+j/rr1YdyQJSGlFKUaBVL3mgWR0CpqaTQeFL4dX2UKGgGaAloD0MIL4hITXvickCUhpRSlGgVS/NoFkdAqam/UtqYZ3V9lChoBmgJaA9DCIqO5PKfgHBAlIaUUpRoFUu7aBZHQKmp4valDWt1fZQoaAZoCWgPQwjdek0PytNxQJSGlFKUaBVLxGgWR0Cpqfh+nZTRdX2UKGgGaAloD0MIAtnr3R9KckCUhpRSlGgVS61oFkdAqaoR8c+7lXV9lChoBmgJaA9DCNTRcTWyDHBAlIaUUpRoFUuraBZHQKmqQBwuM/B1fZQoaAZoCWgPQwimRuhn6g5uQJSGlFKUaBVL4mgWR0CpqmtmlImPdX2UKGgGaAloD0MIGQCquLE6c0CUhpRSlGgVTQMBaBZHQKmqjAJswcp1fZQoaAZoCWgPQwglA0AVd1RyQJSGlFKUaBVLnWgWR0CpqpjIRywOdX2UKGgGaAloD0MIskY9RKPAcECUhpRSlGgVS9xoFkdAqarkALiMpHV9lChoBmgJaA9DCG/1nPT+TXBAlIaUUpRoFUvLaBZHQKmq7lvqC6J1fZQoaAZoCWgPQwiKAn0iT8VyQJSGlFKUaBVL42gWR0CpqxVcMVk+dX2UKGgGaAloD0MIED//Pfh4cECUhpRSlGgVS9RoFkdAqas4EZBLPHV9lChoBmgJaA9DCAgAjj370HNAlIaUUpRoFUvgaBZHQKmrUPsAvL51fZQoaAZoCWgPQwhU4jrGVUZxQJSGlFKUaBVL3WgWR0Cpq5Jrk8zRdX2UKGgGaAloD0MIpYY2AFtNc0CUhpRSlGgVS9xoFkdAqau/GwRoRXV9lChoBmgJaA9DCIf7yK2JwHBAlIaUUpRoFUvMaBZHQKmr2be/Ho51fZQoaAZoCWgPQwink2x1Oe5uQJSGlFKUaBVLtGgWR0Cpq9czImw8dX2UKGgGaAloD0MIasL2kzF+cUCUhpRSlGgVS95oFkdAqavqoIfKZHV9lChoBmgJaA9DCA5mE2CYB3BAlIaUUpRoFUuxaBZHQKmr6QDFId51fZQoaAZoCWgPQwi8P96rVspxQJSGlFKUaBVL3GgWR0CprBxlpXZHdX2UKGgGaAloD0MIZjOHpJY+cECUhpRSlGgVS7doFkdAqaxAMjNY83V9lChoBmgJaA9DCPAw7Zv7OXNAlIaUUpRoFUuraBZHQKmsS40/GER1fZQoaAZoCWgPQwjvIHamUPpwQJSGlFKUaBVL0WgWR0CprFqXv6TGdX2UKGgGaAloD0MIq+tQTYlscECUhpRSlGgVS7loFkdAqaxiPhhpg3V9lChoBmgJaA9DCFBUNqypPXBAlIaUUpRoFUumaBZHQKmshqs2ehB1fZQoaAZoCWgPQwh4gCct3IJvQJSGlFKUaBVLuWgWR0CprKd+w1R+dX2UKGgGaAloD0MImZoEb8gDckCUhpRSlGgVS6doFkdAqazNQ40dinV9lChoBmgJaA9DCBLcSNki4XFAlIaUUpRoFUvDaBZHQKms83hn8Kp1fZQoaAZoCWgPQwiDiT+K+rhwQJSGlFKUaBVL12gWR0CprWa/Zdv9dX2UKGgGaAloD0MIsRngguwMckCUhpRSlGgVS+JoFkdAqa3P6GgzxnV9lChoBmgJaA9DCNOHLqhvNHJAlIaUUpRoFUvMaBZHQKmt89ovi991fZQoaAZoCWgPQwg10HzO3RhxQJSGlFKUaBVLzmgWR0CprfwAlv61dX2UKGgGaAloD0MIbuAO1Gm+cECUhpRSlGgVS7hoFkdAqa4AV45cT3V9lChoBmgJaA9DCBTpfk4BIXJAlIaUUpRoFUvmaBZHQKmuD5Jsfq51fZQoaAZoCWgPQwieeM4WkEFxQJSGlFKUaBVL32gWR0Cprhl5fMOgdX2UKGgGaAloD0MIbhea67R9cUCUhpRSlGgVS+VoFkdAqa4nTodMkHV9lChoBmgJaA9DCGo0uRiDuHNAlIaUUpRoFUu+aBZHQKmuOpazNUx1fZQoaAZoCWgPQwhnJ4OjZBBwQJSGlFKUaBVLtGgWR0Cprj0ADJU6dX2UKGgGaAloD0MIk9+ikyU+cUCUhpRSlGgVS9toFkdAqa6j+NtIkXV9lChoBmgJaA9DCOo+AKmNcXFAlIaUUpRoFUvnaBZHQKmuq31jAi51fZQoaAZoCWgPQwgPe6GALQRzQJSGlFKUaBVL1mgWR0CprsUhePaMdX2UKGgGaAloD0MI0opvKLxXckCUhpRSlGgVS8VoFkdAqa7jKeTV2HV9lChoBmgJaA9DCKW9wRfmbXFAlIaUUpRoFUvUaBZHQKmu52wFC9h1fZQoaAZoCWgPQwivWwTGOuRzQJSGlFKUaBVL1mgWR0Cpry0rTYukdX2UKGgGaAloD0MIf8LZrWUeSECUhpRSlGgVS79oFkdAqa9eJrLyMHV9lChoBmgJaA9DCEX11sBWRm9AlIaUUpRoFUu/aBZHQKmvwF4cFQl1fZQoaAZoCWgPQwi0A64r5vJwQJSGlFKUaBVLv2gWR0Cpr+ceKbazdX2UKGgGaAloD0MIMxgjEgU+dECUhpRSlGgVS8poFkdAqbAAHE/B33V9lChoBmgJaA9DCA1slWCxz3JAlIaUUpRoFUu5aBZHQKmwAnc+JP91fZQoaAZoCWgPQwjGGcOcoJVyQJSGlFKUaBVLy2gWR0CpsA15B1LbdX2UKGgGaAloD0MIeawZGaRHcUCUhpRSlGgVS8toFkdAqbAbEit7r3V9lChoBmgJaA9DCD3RdeHHGnFAlIaUUpRoFUvAaBZHQKmwKHrQgLZ1fZQoaAZoCWgPQwiUEReARoVwQJSGlFKUaBVL0WgWR0CpsDIwM6RydX2UKGgGaAloD0MI+u3rwPnecECUhpRSlGgVS6doFkdAqbCKsySFG3V9lChoBmgJaA9DCEEQIEOHqXJAlIaUUpRoFUvqaBZHQKmwjJW/8EV1fZQoaAZoCWgPQwiif4KLVWFyQJSGlFKUaBVLx2gWR0CpsLoSteUqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 690, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e739e29082d300586f20bdd22eda5cc5d40584d2ba0d4ee391a9ce357c578e9c
|
3 |
+
size 144088
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff83c1b1200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff83c1b1290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff83c1b1320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff83c1b13b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff83c1b1440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff83c1b14d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff83c1b1560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff83c1b15f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff83c1b1680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff83c1b1710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff83c1b17a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff83c202360>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2031616,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653143734.176374,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzUxTu1wrILoKcEQzLEk9sE9QSjstusezAACAPwAAgD/mYcI9r14kP3oHAz0mDRC/qJ34PcO1Y7wAAAAAAAAAAFojGb5sLsg+4zlSPpsG5L7pjjK9onTKPQAAAAAAAAAAzafgPB9dtbne4XG9H1bfsmAFr7o7TNgzAACAPwAAgD+znqK99vRNuuuNiLS8f8KvUcLVOnJulDMAAAAAAACAP1oFEr6IHZM+mn8HPNPirL77kcm9cuCaOwAAAAAAAAAAQMYJPrbGZj8vU0U95fUYv+OYAT7LxJa7AAAAAAAAAAANHI89yM6KP+1Rij5UThq/wW0KPlWABj4AAAAAAAAAAIA5ez1PPya8ipMRvmYp1rzuhes61rMyOwAAgD8AAIA/muOaPDKXtD/qIuw+QaEkvWavPLxipjQ6AAAAAAAAAADNKAK9Qp6MPv7/mT3WuOG+3SxmO5gY7jwAAAAAAAAAADOdSry/IRU/ElCbPGR6Fb8i44w8KLBxvAAAAAAAAAAAwJSGPsGydj+sbSU+dY7avllBuj5qq8E6AAAAAAAAAADNnKM6TlaKPy0l77r7sjW/U6vxuSfPQjwAAAAAAAAAAM0dGL2Paku6WRuJPBy+oDGEIJ47YXeJswAAgD8AAIA/Gv2cvdEoqj4dr3y96jfmvt51TL2OJLS7AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7rQ1Iph4cECUhpRSlIwBbJRLtIwBdJRHQKmkMRe1KGt1fZQoaAZoCWgPQwheu7ThcGxzQJSGlFKUaBVL7WgWR0CppFbpeNT+dX2UKGgGaAloD0MItMpMab3fcECUhpRSlGgVS/VoFkdAqaSQwTM7l3V9lChoBmgJaA9DCHptNlbiNHBAlIaUUpRoFUuzaBZHQKmkrjn3cpN1fZQoaAZoCWgPQwgKKxVUFKFyQJSGlFKUaBVL2WgWR0CppLeeWfK7dX2UKGgGaAloD0MIrg/rjdrQcUCUhpRSlGgVS91oFkdAqaTJH7P6bnV9lChoBmgJaA9DCI0LB0JyUnBAlIaUUpRoFUu2aBZHQKmk0Q4jrzJ1fZQoaAZoCWgPQwgZyLPLdz1xQJSGlFKUaBVL42gWR0CppNyxA0KrdX2UKGgGaAloD0MIGm7A5wdgc0CUhpRSlGgVS95oFkdAqaUaxC6YmnV9lChoBmgJaA9DCH15AfZR1nFAlIaUUpRoFUvaaBZHQKmlHVNHpbF1fZQoaAZoCWgPQwiNCpxsAwJwQJSGlFKUaBVLu2gWR0CppVet8uzydX2UKGgGaAloD0MIbf30n/W3ckCUhpRSlGgVS+NoFkdAqaVdie/Ya3V9lChoBmgJaA9DCFR0JJe/MnFAlIaUUpRoFUu2aBZHQKmlirqdH2B1fZQoaAZoCWgPQwheLXdmwopxQJSGlFKUaBVLvmgWR0CppfF6Z6UrdX2UKGgGaAloD0MI8tJNYlBUckCUhpRSlGgVS75oFkdAqaYVBMSK33V9lChoBmgJaA9DCMYVF0flknNAlIaUUpRoFUvKaBZHQKmmNl2eQMh1fZQoaAZoCWgPQwhGelG7nw1xQJSGlFKUaBVLxWgWR0CpplEFwDNhdX2UKGgGaAloD0MIFmniHSCccECUhpRSlGgVS51oFkdAqaZc2kzoEHV9lChoBmgJaA9DCALXFTPCkXJAlIaUUpRoFUukaBZHQKmmaGwA2ht1fZQoaAZoCWgPQwhMT1jiQddxQJSGlFKUaBVL3WgWR0Cppm4+r2g4dX2UKGgGaAloD0MIq0GY230WdECUhpRSlGgVS8JoFkdAqabNxKg7HXV9lChoBmgJaA9DCCC1iZO7iXNAlIaUUpRoFUvZaBZHQKmm3hfjS5R1fZQoaAZoCWgPQwhYycfugmNzQJSGlFKUaBVL7GgWR0CppvTj3mFKdX2UKGgGaAloD0MI7URJSKS2c0CUhpRSlGgVS+ZoFkdAqacIUxmCiHV9lChoBmgJaA9DCFSNXg3Qm3FAlIaUUpRoFUu3aBZHQKmnMJ1JUYN1fZQoaAZoCWgPQwhFhH8RdOlwQJSGlFKUaBVLvWgWR0Cpp0Sa3I+4dX2UKGgGaAloD0MIsWmlEIivcUCUhpRSlGgVS+VoFkdAqadiO5rgwXV9lChoBmgJaA9DCN0/FqLDTXJAlIaUUpRoFUvuaBZHQKmnen7YTTR1fZQoaAZoCWgPQwhPPdLgtkRyQJSGlFKUaBVL0mgWR0Cpp6SBTXJ6dX2UKGgGaAloD0MIb4Jvmv6PcECUhpRSlGgVS8xoFkdAqaf/FYMfBHV9lChoBmgJaA9DCCrG+ZvQi29AlIaUUpRoFUumaBZHQKmoFDhLoOh1fZQoaAZoCWgPQwjTFtf4jHFzQJSGlFKUaBVLrGgWR0CpqBQljVhDdX2UKGgGaAloD0MIHqUSntBYcUCUhpRSlGgVS9RoFkdAqag4gxJumHV9lChoBmgJaA9DCKZiY14HtnNAlIaUUpRoFUvbaBZHQKmoZycTakB1fZQoaAZoCWgPQwim8naE09tzQJSGlFKUaBVL3mgWR0CpqJ0YKpkxdX2UKGgGaAloD0MIvVXXoZpFcUCUhpRSlGgVS8JoFkdAqai5oEjgRHV9lChoBmgJaA9DCPBpTl4kqHJAlIaUUpRoFUv7aBZHQKmo14yoGY91fZQoaAZoCWgPQwhmEYqtIDVyQJSGlFKUaBVL0WgWR0CpqO4D9wWFdX2UKGgGaAloD0MIpI0j1iInckCUhpRSlGgVS9BoFkdAqakTojfNzXV9lChoBmgJaA9DCNHP1OuWcHJAlIaUUpRoFUu/aBZHQKmpFTjNpud1fZQoaAZoCWgPQwiFQ2/xMPNwQJSGlFKUaBVL22gWR0CpqRsefZmJdX2UKGgGaAloD0MIgT0mUtqbckCUhpRSlGgVS9NoFkdAqalVUMoc73V9lChoBmgJaA9DCI6R7BEqg3BAlIaUUpRoFUu9aBZHQKmpf48EFGJ1fZQoaAZoCWgPQwh+j/rr1YdyQJSGlFKUaBVL3mgWR0CpqaTQeFL4dX2UKGgGaAloD0MIL4hITXvickCUhpRSlGgVS/NoFkdAqam/UtqYZ3V9lChoBmgJaA9DCIqO5PKfgHBAlIaUUpRoFUu7aBZHQKmp4valDWt1fZQoaAZoCWgPQwjdek0PytNxQJSGlFKUaBVLxGgWR0Cpqfh+nZTRdX2UKGgGaAloD0MIAtnr3R9KckCUhpRSlGgVS61oFkdAqaoR8c+7lXV9lChoBmgJaA9DCNTRcTWyDHBAlIaUUpRoFUuraBZHQKmqQBwuM/B1fZQoaAZoCWgPQwimRuhn6g5uQJSGlFKUaBVL4mgWR0CpqmtmlImPdX2UKGgGaAloD0MIGQCquLE6c0CUhpRSlGgVTQMBaBZHQKmqjAJswcp1fZQoaAZoCWgPQwglA0AVd1RyQJSGlFKUaBVLnWgWR0CpqpjIRywOdX2UKGgGaAloD0MIskY9RKPAcECUhpRSlGgVS9xoFkdAqarkALiMpHV9lChoBmgJaA9DCG/1nPT+TXBAlIaUUpRoFUvLaBZHQKmq7lvqC6J1fZQoaAZoCWgPQwiKAn0iT8VyQJSGlFKUaBVL42gWR0CpqxVcMVk+dX2UKGgGaAloD0MIED//Pfh4cECUhpRSlGgVS9RoFkdAqas4EZBLPHV9lChoBmgJaA9DCAgAjj370HNAlIaUUpRoFUvgaBZHQKmrUPsAvL51fZQoaAZoCWgPQwhU4jrGVUZxQJSGlFKUaBVL3WgWR0Cpq5Jrk8zRdX2UKGgGaAloD0MIpYY2AFtNc0CUhpRSlGgVS9xoFkdAqau/GwRoRXV9lChoBmgJaA9DCIf7yK2JwHBAlIaUUpRoFUvMaBZHQKmr2be/Ho51fZQoaAZoCWgPQwink2x1Oe5uQJSGlFKUaBVLtGgWR0Cpq9czImw8dX2UKGgGaAloD0MIasL2kzF+cUCUhpRSlGgVS95oFkdAqavqoIfKZHV9lChoBmgJaA9DCA5mE2CYB3BAlIaUUpRoFUuxaBZHQKmr6QDFId51fZQoaAZoCWgPQwi8P96rVspxQJSGlFKUaBVL3GgWR0CprBxlpXZHdX2UKGgGaAloD0MIZjOHpJY+cECUhpRSlGgVS7doFkdAqaxAMjNY83V9lChoBmgJaA9DCPAw7Zv7OXNAlIaUUpRoFUuraBZHQKmsS40/GER1fZQoaAZoCWgPQwjvIHamUPpwQJSGlFKUaBVL0WgWR0CprFqXv6TGdX2UKGgGaAloD0MIq+tQTYlscECUhpRSlGgVS7loFkdAqaxiPhhpg3V9lChoBmgJaA9DCFBUNqypPXBAlIaUUpRoFUumaBZHQKmshqs2ehB1fZQoaAZoCWgPQwh4gCct3IJvQJSGlFKUaBVLuWgWR0CprKd+w1R+dX2UKGgGaAloD0MImZoEb8gDckCUhpRSlGgVS6doFkdAqazNQ40dinV9lChoBmgJaA9DCBLcSNki4XFAlIaUUpRoFUvDaBZHQKms83hn8Kp1fZQoaAZoCWgPQwiDiT+K+rhwQJSGlFKUaBVL12gWR0CprWa/Zdv9dX2UKGgGaAloD0MIsRngguwMckCUhpRSlGgVS+JoFkdAqa3P6GgzxnV9lChoBmgJaA9DCNOHLqhvNHJAlIaUUpRoFUvMaBZHQKmt89ovi991fZQoaAZoCWgPQwg10HzO3RhxQJSGlFKUaBVLzmgWR0CprfwAlv61dX2UKGgGaAloD0MIbuAO1Gm+cECUhpRSlGgVS7hoFkdAqa4AV45cT3V9lChoBmgJaA9DCBTpfk4BIXJAlIaUUpRoFUvmaBZHQKmuD5Jsfq51fZQoaAZoCWgPQwieeM4WkEFxQJSGlFKUaBVL32gWR0Cprhl5fMOgdX2UKGgGaAloD0MIbhea67R9cUCUhpRSlGgVS+VoFkdAqa4nTodMkHV9lChoBmgJaA9DCGo0uRiDuHNAlIaUUpRoFUu+aBZHQKmuOpazNUx1fZQoaAZoCWgPQwhnJ4OjZBBwQJSGlFKUaBVLtGgWR0Cprj0ADJU6dX2UKGgGaAloD0MIk9+ikyU+cUCUhpRSlGgVS9toFkdAqa6j+NtIkXV9lChoBmgJaA9DCOo+AKmNcXFAlIaUUpRoFUvnaBZHQKmuq31jAi51fZQoaAZoCWgPQwgPe6GALQRzQJSGlFKUaBVL1mgWR0CprsUhePaMdX2UKGgGaAloD0MI0opvKLxXckCUhpRSlGgVS8VoFkdAqa7jKeTV2HV9lChoBmgJaA9DCKW9wRfmbXFAlIaUUpRoFUvUaBZHQKmu52wFC9h1fZQoaAZoCWgPQwivWwTGOuRzQJSGlFKUaBVL1mgWR0Cpry0rTYukdX2UKGgGaAloD0MIf8LZrWUeSECUhpRSlGgVS79oFkdAqa9eJrLyMHV9lChoBmgJaA9DCEX11sBWRm9AlIaUUpRoFUu/aBZHQKmvwF4cFQl1fZQoaAZoCWgPQwi0A64r5vJwQJSGlFKUaBVLv2gWR0Cpr+ceKbazdX2UKGgGaAloD0MIMxgjEgU+dECUhpRSlGgVS8poFkdAqbAAHE/B33V9lChoBmgJaA9DCA1slWCxz3JAlIaUUpRoFUu5aBZHQKmwAnc+JP91fZQoaAZoCWgPQwjGGcOcoJVyQJSGlFKUaBVLy2gWR0CpsA15B1LbdX2UKGgGaAloD0MIeawZGaRHcUCUhpRSlGgVS8toFkdAqbAbEit7r3V9lChoBmgJaA9DCD3RdeHHGnFAlIaUUpRoFUvAaBZHQKmwKHrQgLZ1fZQoaAZoCWgPQwiUEReARoVwQJSGlFKUaBVL0WgWR0CpsDIwM6RydX2UKGgGaAloD0MI+u3rwPnecECUhpRSlGgVS6doFkdAqbCKsySFG3V9lChoBmgJaA9DCEEQIEOHqXJAlIaUUpRoFUvqaBZHQKmwjJW/8EV1fZQoaAZoCWgPQwiif4KLVWFyQJSGlFKUaBVLx2gWR0CpsLoSteUqdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 690,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4f641b116352bf539c1c31d86886578fb287c1504303cfbced377f86a10b1ec
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:deedec347cca54b84e7874f0ca3d05ba7f04845a364eb169e66eb693a2d73344
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10cb538eaeac23038d5ca2e33f72147c8caa1bdda13fa2e643ff0dd7230cb2c9
|
3 |
+
size 221927
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 271.96541759842705, "std_reward": 16.90663867351403, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-21T15:28:01.812423"}
|